Advertisement

Targeting ERK/COX-2 signaling pathway in permethrin-induced testicular toxicity: a possible modulating effect of matrine

  • Marwa Mohamed AtefEmail author
  • Omnia Safwat El-Deeb
  • Mona Tayssir Sadek
  • Rehab E. Abo El Gheit
  • Marwa Nagy Emam
  • Yasser Mostafa Hafez
  • Rasha Osama El-Esawy
Original Article
  • 62 Downloads

Abstract

Permethrin (PER), the prevalent synthetic pyrethroid, was reported to have genotoxic effects along with male reproductive organs impairment. Matrine, the Chinese herb chief alkaloid constituent, is used extensively owing to its recognized pharmacological properties. The study included 30 rats allocated equally into three groups; Group I: Control group, Group II: PER group and Group III: Matrine treated PER group. All groups were subjected to the measurement of Steroidogenic acute regulatory (StAR) gene expression by PCR technique while testosterone, phosphorylated Extracellular signal-regulated Kinase 1/2 (p-ERK1/2) and Cyclooxygenase 2 (COX-2) levels were assessed by ELISA technique. Malondialdehyde (MDA), total antioxidant capacity (TAC) and glutathione peroxidase (GPx) were also detected spectrophotometrically in addition to assessment of DNA fragmentation. Testicular histological structure as well as sperm count and morphology were studied. Matrine improved testicular toxicity evidenced by significant upregulation of StAR gene expression, elevation of testosterone level and significant decrease of p-ERK1/2 and COX-2 levels. Moreover, enhancements of the antioxidant status together with improvement of the histological findings were observed. These findings could pave the way for matrine to be used as a promising therapeutic agent in treatment of PER toxicity.

Graphic abstract

Keywords

Permethrin Matrine Steroidogenic acute regulatory protein Phosphorylated extracellular signal-regulated kinase Cyclooxygenase 2 

Notes

Acknowledgements

No fund was received for this study.

Compliance with ethical standards

Conflict of interest

The authors declared that there is no conflict of interests.

Supplementary material

11033_2019_5125_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 24 kb)

References

  1. 1.
    Hodgson E (2012) Biotransformation of individual pesticides: some examples. Pestic Biotransformation Dispos.  https://doi.org/10.1016/B978-0-12-385481-0.00009-5 CrossRefGoogle Scholar
  2. 2.
    Drago B, Shah NS, Shah SH (2014) Acute permethrin neurotoxicity: variable presentations, high index of suspicion. Toxicol Rep 1:1026–1028.  https://doi.org/10.1016/j.toxrep.2014.09.007 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nasuti C, Fattoretti P, Carloni M et al (2014) Neonatal exposure to permethrin pesticide causes lifelong fear and spatial learning deficits and alters hippocampal morphology of synapses. J Neurodev Disord 6(1):7.  https://doi.org/10.1186/1866-1955-6-7 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wang X, Martínez MD, Dai M et al (2016) Permethrin-induced oxidative stress and toxicity and metabolism—a review. Environ Res 149:86–104.  https://doi.org/10.1016/j.envres.2016.05.003 CrossRefPubMedGoogle Scholar
  5. 5.
    Rosita G, Manuel C, Franco M et al (2015) Permethrin and its metabolites affect Cu/Zn superoxide conformation: fluorescence and insilico evidences. Mol Biosyst 11:208–217.  https://doi.org/10.1039/c4mb00491d CrossRefPubMedGoogle Scholar
  6. 6.
    Anadon A, Diez MJ, Sierra M, Sanchez JA, Teran MT (1988) Microsomal enzyme induction by permethrin in rats. Vet Hum Toxicol 30(4):309–312PubMedGoogle Scholar
  7. 7.
    Sun QC, Peng Y, Qi W et al (2017) Permethrin decreased insulin-stimulated AKT phosphorylation dependent on extracellular signal-regulated kinase-1 (ERK), but not AMP-activated protein kinase α (AMPKα), in C2C12 myotubes. Food Chem Toxicol 109(Pt 1):95–101.  https://doi.org/10.1016/j.fct.2017.08.046 CrossRefPubMedGoogle Scholar
  8. 8.
    Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK (2012) Pesticide and insect repellent mixture (permethrin and DEET) induces epigenetic transgenerational inheritance of disease and sperm epimutations. Reprod Toxicol 34(4):708–719.  https://doi.org/10.1016/j.reprotox.2012.08.010 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hedges L, Brown S, Vardy A, Doyle E, Yoon M, Osimitz TG, Lake BG (2019) Metabolism of deltamethrin and cis- and trans-permethrin by rat and human liver microsomes, liver cytosol and plasma preparations. Xenobiotica 49(4):388–396.  https://doi.org/10.1080/00498254.2018.1451011 CrossRefPubMedGoogle Scholar
  10. 10.
    Scollon EJ, Starr JM, Godin SJ et al (2009) In vitro metabolism of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome P450 isoforms. Drug Metab Dispos 37:221–228.  https://doi.org/10.1124/dmd.108.022343 CrossRefPubMedGoogle Scholar
  11. 11.
    Carlson GP, Schoenig GP (1980) Induction of liver microsomal NADPH cytochrome c reductase and cytochrome P-450 by some new synthetic pyrethroids. Toxicol Appl Pharmacol 52(3):507–512.  https://doi.org/10.1016/0041-008X(80)90345-2 CrossRefPubMedGoogle Scholar
  12. 12.
    Anadón A, Martinez-Larrañaga MR, Diaz MJ, Bringas P (1991) Toxicokinetics of permethrin in the rat. Toxicol Appl Pharmacol 110(1):1–8.  https://doi.org/10.1016/0041-008x(91)90284-l CrossRefPubMedGoogle Scholar
  13. 13.
    Vadhana MD, Carloni M, Nasuti C et al (2011) Early life permethrin insecticide treatment leads to heart damage in adult rats. Exp Gerontol 46:731–738.  https://doi.org/10.1016/j.exger.2011.05.005 CrossRefPubMedGoogle Scholar
  14. 14.
    Sharma P, Huq AU, Singh R (2014) Cypermethrin-induced reproductive toxicity in the rat is prevented by resveratrol. J Hum Reprod Sci 7(2):99–106.  https://doi.org/10.4103/0974-1208.138867 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Betancourt M, Reséndiz A, Fierro EC (2006) Effect of two insecticides and two herbicides on the porcine sperm motility patterns using computer assisted semen analysis (CASA) in vitro. Reprod Toxicol 22:508–512.  https://doi.org/10.1016/j.reprotox.2006.03.001 CrossRefPubMedGoogle Scholar
  16. 16.
    Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802:4396.  https://doi.org/10.1016/j.bbadis.2009.12.009 CrossRefGoogle Scholar
  17. 17.
    Stocco DM, Sodeman TC (1991) The 30-kDa mitochondrial proteins induced by hormone stimulation in MA-10 mouse Leydig tumor cells are processed from larger precursors. J Biol Chem 266:19731PubMedGoogle Scholar
  18. 18.
    Park GY, Christman JW (2006) Involvement of cyclooxygenase-2 and prostaglandins in the molecular pathogenesis of inflammatory lung diseases. Am J Physiol Lung Cell Mol Physiol 290(5):L797–L805.  https://doi.org/10.1152/ajplung.00513.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wang W, Shen CL, Dyson MT et al (2005) Cyclooxygenase-2 regulation of the age-related decline in testosterone biosynthesis. Endocrinology 146(10):4202–4208.  https://doi.org/10.1210/en.2005-0298 CrossRefPubMedGoogle Scholar
  20. 20.
    Hasegawa T, Zhao L, Caron KM et al (2000) Developmental roles of the steroidogenic acute regulatory protein (StAR) as revealed by StAR knockout mice. Mol Endocrinol 14(9):1462–1471.  https://doi.org/10.1210/mend.14.9.0515 CrossRefPubMedGoogle Scholar
  21. 21.
    Manna PR, Stocco DM (2011) The role of specific mitogen-activated protein kinase signaling cascades in the regulation of steroidogenesis. J Signal Transduct 2011:821615.  https://doi.org/10.1155/2011/821615 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang HF, Shi LJ, Song GY et al (2013) Protective effects of matrine against progression of high-fructose diet-induced steatohepatitis by enhancing antioxidant and anti-inflammatory defenses involving Nrf2 translocation. Food Chem Toxicol 55:70–77.  https://doi.org/10.1016/j.fct.2012.12.043 CrossRefPubMedGoogle Scholar
  23. 23.
    Liu P, Zhu L, Zou G, Ke H (2019) Matrine suppresses pancreatic fibrosis by regulating TGF-β/Smad signaling in rats. Yonsei Med J 60(1):79–87.  https://doi.org/10.3349/ymj.2019.60.1.79 CrossRefPubMedGoogle Scholar
  24. 24.
    Khaki A, Rajabzadeh A, Khaki AA (2017) Side effects of pyrethroid and supporting role of onion in the male rat’s spermatogenesis. Chin Med J (Engl). 130(24):3015–3016.  https://doi.org/10.4103/0366-6999.220297 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  26. 26.
    Rat sperm morphological assessment (Guideline document) Inveresk Research. (2000) Huntingdon life sciences, Sequani, Glaxo Wellcome, edition 1, OctoberGoogle Scholar
  27. 27.
    Kushwaha S, Jena GB (2013) Telmisartan ameliorates germ cell toxicity in the STZ-induced diabetic rat: studies on possible molecular mechanisms. Mutat Res 755(2013):11–23.  https://doi.org/10.1016/j.mrgentox.2013.04.013 CrossRefPubMedGoogle Scholar
  28. 28.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351CrossRefGoogle Scholar
  29. 29.
    Koracevic D, Koracevic G, Djordjevic V et al (2001) Method for the measurement of antioxidant activity in human fluids. J Clin Pathol 54(5):356–361.  https://doi.org/10.1136/jcp.54.5.356 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Lab Clin Med 70:158–169Google Scholar
  31. 31.
    Zhu WH, Majluf-Cruz A, Omburo GA (1998) Cyclic AMP specific phosphodiesterase inhibitor rolipram and RO-20-1724 promoted apoptosis in HL60 promyelocytic leukemic cells via cyclic AMP-independent mechanism. Life Sci 63(4):265–274CrossRefGoogle Scholar
  32. 32.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Method 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  33. 33.
    Mostafa HS, Abd El-Baset SA, Kattaia AA et al (2016) Efficacy of naringenin against permethrin-induced testicular toxicity in rats. Int J Exp Pathol 97(1):37–49.  https://doi.org/10.1111/iep.12168 CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Wang D, Kamijima M, Okamura A et al (2012) Evidence for diazinon-mediated inhibition of cis-permethrin metabolism and its effects on reproductive toxicity in adult male mice. Reprod Toxicol 34(4):489–497.  https://doi.org/10.1016/j.reprotox.2012.07.007 CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang SY, Ito Y, Yamanoshita O et al (2007) Permethrin may disrupt testosterone biosynthesis via mitochondrial membrane damage of Leydig cells in adult male mouse. Endocrinology 148(8):3941–3949.  https://doi.org/10.1210/en.2006-1497 CrossRefPubMedGoogle Scholar
  36. 36.
    Issam C, Zohra H, Monia Z et al (2011) Effects of dermal sub-chronic exposure of pubescent male rats to permethrin (PRMT) on the histological structures ofgenitaltract, testoster one and lipoperoxidation. Exp Toxicol Pathol 63:393–400.  https://doi.org/10.1016/j.etp.2010.02.016 CrossRefPubMedGoogle Scholar
  37. 37.
    Creasy DM (2001) Pathogenesis of male reproductive toxicity. Toxicol Pathol 29(1):64–76.  https://doi.org/10.1080/019262301301418865 CrossRefPubMedGoogle Scholar
  38. 38.
    Cheville NF (2009) Response to cell injury, Ch: 1, cell death, Ch: 2 in, ultrastructural pathology: the comparative cellular basis of disease, 2nd edn. Wiley-Blackwell, Ames, pp 5–33Google Scholar
  39. 39.
    Strayer DS, Rubin E (2012) Cell adaptation, cell injury and cell death, Ch: 1. In: Rubin R, Strayer DS, Rubin E (eds) Rubinʼs pathology: clinicopathologic foundations of medicine, 6th edn. Lippincott Williams & Wilkins, Philadelphia, p 1Google Scholar
  40. 40.
    El Ghazzawy IF, Meleis AE, Farghaly EF, Solaiman A (2011) Histological study of the possible protective effect of pomegranate juice on bisphenol-A induced changes of the caput epididymal epithelium and sperms of adult albino rats. Alexandria J Med 47:125–137.  https://doi.org/10.1016/j.ajme.2011.06.006 CrossRefGoogle Scholar
  41. 41.
    Oluwakemi O, Olufeyisipe A (2016) DNA fragmentation and oxidative stress compromise sperm motility and survival in late pregnancy exposure to omega-9 fatty acid in rats. Iran J Basic Med Sci 19:511–520PubMedPubMedCentralGoogle Scholar
  42. 42.
    Guven C, Sevgiler Y, Taskin E (2018) Pyrethroid Insecticides as the Mitochondrial Dysfunction Inducers. Open access peer-reviewed chapter  https://doi.org/10.5772/intechopen.80283 Google Scholar
  43. 43.
    Huang F, Liu QY, Xie SJ et al (2016) Cypermethrin induces macrophages death through cell cycle arrest and oxidative stress-mediated JNK/ERK signaling regulated apoptosis. Int J Mol Sci.  https://doi.org/10.3390/ijms17060885 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yang JS, Symington S, Clark JM, Park Y (2018) Permethrin, a pyrethroid insecticide, regulates ERK1/2 activation through membrane depolarization-mediated pathway in HepG2 hepatocytes. Food Chem Toxicol 121:387–395.  https://doi.org/10.1016/j.fct.2018.09.009 CrossRefPubMedGoogle Scholar
  45. 45.
    Subbaramaiah K, Chung WJ, Dannenberg AJ (1998) Ceramide regulates the transcription of cyclooxygenase-2. Evidence for involvement of extracellular signal-regulated kinase/c-Jun N-terminal kinase and p38 mitogen-activated protein kinase pathways. J Biol Chem 273:32943–32949CrossRefGoogle Scholar
  46. 46.
    Limami Y, Pinon A, Leger DY et al (2012) The P2Y2/Src/p38/COX-2 pathway is involved in the resistance to ursolic acid-induced apoptosis in colorectal and prostate cancer cells. Biochimie 94:1754–1763.  https://doi.org/10.1016/j.biochi.2012.04.006 CrossRefPubMedGoogle Scholar
  47. 47.
    Chiu WT, Shen SC, Chow JM et al (2010) Contribution of reactive oxygen species to migration/invasion of human glioblastoma cells U87 via ERK-dependent COX-2/PGE2 activation. Neurobiol Dis 37:118–129.  https://doi.org/10.1016/j.nbd.2009.09.015 CrossRefPubMedGoogle Scholar
  48. 48.
    Wang X, Walsh LP, Reinhart AJ et al (2000) The role of arachidonic acid in steroidogenesis and steroidogenic acute regulatory (StAR) gene and protein expression. J Biol Chem 275:20204–20209.  https://doi.org/10.1074/jbc.M003113200 CrossRefPubMedGoogle Scholar
  49. 49.
    Liou CJ, Lai YR, Chen YL et al (2016) Matrine attenuates COX-2 and ICAM-1 expressions in human lung epithelial cells and prevents acute lung injury in LPS-induced mice. Mediators Inflamm 2016:3630485.  https://doi.org/10.1155/2016/3630485 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Yu Q, Chen B, Zhang X et al (2013) Arsenic trioxide-enhanced, matrine-induced apoptosis in multiple myeloma cell lines. PlantaMed 79(9):775–781.  https://doi.org/10.1055/s-0032-1328554 CrossRefGoogle Scholar
  51. 51.
    Sun K, Yang P, Zhao R et al (2018) Matrine attenuates D-galactose-induced aging-related behavior in mice via inhibition of cellular senescence and oxidative stress. Oxid Med Cell Longev 27:7108604.  https://doi.org/10.1155/2018/7108604 CrossRefGoogle Scholar
  52. 52.
    Meng F, Wang J, Ding F, Xie Y, Zhang Y et al (2017) Neuroprotective effect of matrine on MPTP-induced Parkinson’s disease and on Nrf2 expression. Oncol Lett 13(1):296–300.  https://doi.org/10.3892/ol.2016.5383 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Medical Biochemistry Department, Faculty of MedicineTanta UniversityTantaEgypt
  2. 2.Histology Department, Faculty of MedicineTanta UniversityTantaEgypt
  3. 3.Physiology Department, Faculty of MedicineTanta UniversityTantaEgypt
  4. 4.Internal Medicine Department, Faculty of MedicineTanta UniversityTantaEgypt
  5. 5.Pharmacology Department, Faculty of MedicineTanta UniversityTantaEgypt

Personalised recommendations