The beneficial role of SIRT1 activator on chemo- and radiosensitization of breast cancer cells in response to IL-6

  • Hossein Masoumi
  • Amin Soltani
  • Mahdi GhatrehsamaniEmail author
Original Article


Tumor environmental cytokines, such as IL-6, has a major role in the outcome of radiation and chemotherapy. In this study, we hypothesized that IL-6 mediates its effects via SIRT1 as a protein deacetylase and activator of phosphatidylinositol-3 kinase pathways. In the present study, we evaluated the effects of the novel dual inhibitor of phosphatidylinositol-3 kinase/mammalian target of rapamycin, NVP-BEZ235, and SIRT1 inhibitor and activator plus radiotherapy in breast cancer cells treated with IL-6. Here, IL-6 untreated/pretreated human breast cancer cells were cultured with single or combination of NVP-BEZ235 and/or SIRT1 activator (SRT1720)/inhibitor (EX-527) under radiotherapy condition. After all treatments, the MTT assay and flow cytometry assay were used to explore cell viability and the ability of our treatments in altering cancer stem cells (CSCs) population or cellular death (apoptosis + necrosis) induction. Simultaneous exposure to NVP-BEZ235 and SRT1720 sensitized breast cancer cells to radiotherapy but elevated CSCs. Treatment with IL-6 for 2 weeks significantly decreased CSCs population. Activation of SIRT1 via SRT1720 in combination with NVP-BEZ235 significantly decreased breast cancer cells viability in IL-6 pretreatment cultures. Inhibition of SIRT1 via EX-527 diminished the beneficial effects of IL-6 pretreatment. The combination of NVP-BEZ235 and SRT1720 as a SIRT1 activation could effectively decrease breast cancer cells population and augments the efficacy of radiotherapy.


Breast cancer Chemo-radiotherapy Cancer stem cells IL-6 PI3K/AKT/mTOR SIRT1 



We thank the staffs of Cellular and Molecular Research Center, Shahrekord University of Medical Sciences for their help with conducting the study.


This work was supported by the Shahrekord University of medical science [Grant Numbers 3058 and 2177]

Compliance with ethical standards

Conflict of interest

There is no conflict of interest to declare.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Korkaya H, Liu S, Wicha MS (2011) Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest 121:3804–3809PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Dethlefsen C, Højfeldt G, Hojman P (2013) The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res Treat 138:657–664PubMedCrossRefGoogle Scholar
  3. 3.
    Jones VS, Huang R-Y, Chen L-P et al (2016) Cytokines in cancer drug resistance: cues to new therapeutic strategies. Biochim Biophys Acta 1865:255–265PubMedGoogle Scholar
  4. 4.
    George DJ, Halabi S, Shepard TF et al (2005) The prognostic significance of plasma interleukin-6 levels in patients with metastatic hormone-refractory prostate cancer: results from Cancer and Leukemia Group B 9480. Clin Cancer Res 11:1815–1820PubMedCrossRefGoogle Scholar
  5. 5.
    Scambia G, Testa U, Benedetti Panici P et al (1995) Prognostic significance of interleukin 6 serum levels in patients with ovarian cancer. Br J Cancer 71:354–356PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Oka M, Yamamoto K, Takahashi M et al (1996) Relationship between serum levels of interleukin 6, various disease parameters and malnutrition in patients with esophageal squamous cell carcinoma. Cancer Res 56:2776–2780PubMedGoogle Scholar
  7. 7.
    Akira S, Taga T, Kishimoto T (1993) Interleukin-6 in biology and medicine. Adv Immunol 54:1–78PubMedCrossRefGoogle Scholar
  8. 8.
    Chen C-C, Chen W-C, Lu C-H et al (2010) Significance of interleukin-6 signaling in the resistance of pharyngeal cancer to irradiation and the epidermal growth factor receptor inhibitor. Int J Radiat Oncol 76:1214–1224CrossRefGoogle Scholar
  9. 9.
    Santer FR, Malinowska K, Culig Z, Cavarretta IT (2010) Interleukin-6 trans-signalling differentially regulates proliferation, migration, adhesion and maspin expression in human prostate cancer cells. Endocr Relat Cancer 17:241–253PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Akudugu J, Maleka S, Serafin A et al (2015) A cocktail of specific inhibitors of HER-2, PI3K, and mTOR radiosensitises human breast cancer cells. Gratis J Cancer Biol Ther 1:50–59Google Scholar
  11. 11.
    Thomas P, Dong J (2006) Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol 102:175–179PubMedCrossRefGoogle Scholar
  12. 12.
    Fruman DA, Meyers RE, Cantley LC (1998) Phosphoinositide kinases. Annu Rev Biochem 67:481–507PubMedCrossRefGoogle Scholar
  13. 13.
    Pawson T, Nash P (2000) Protein-protein interactions define specificity in signal transduction. Genes Dev 14:1027–1047PubMedGoogle Scholar
  14. 14.
    Testa JR, Bellacosa A (2001) AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA 98:10983–10985PubMedCrossRefGoogle Scholar
  15. 15.
    Vara JÁF, Casado E, de Castro J et al (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30:193–204CrossRefGoogle Scholar
  16. 16.
    Xia P, Xu X-Y (2015) PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res 5:1602–1609PubMedPubMedCentralGoogle Scholar
  17. 17.
    Koga T, Suico MA, Shimasaki S et al (2015) Endoplasmic reticulum (ER) stress induces sirtuin 1 (SIRT1) expression via the PI3K-Akt-GSK3β signaling pathway and promotes hepatocellular injury. J Biol Chem 290:30366–30374PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Wang C, Chen L, Hou X et al (2006) Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 8:1025–1031PubMedCrossRefGoogle Scholar
  19. 19.
    Chen X, Sun K, Jiao S et al (2014) High levels of SIRT1 expression enhance tumorigenesis and associate with a poor prognosis of colorectal carcinoma patients. Sci Rep 4:7481–7489PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Pillai VB, Sundaresan NR, Gupta MP (2014) Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging. Circ Res 114:368–378PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kim D-K, Oh SY, Kwon H-C et al (2009) Clinical significances of preoperative serum interleukin-6 and C-reactive protein level in operable gastric cancer. BMC Cancer 9:155–159PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Łukaszewicz-Zając M, Mroczko B, Kozłowski M et al (2012) Higher importance of interleukin 6 than classic tumor markers (carcinoembryonic antigen and squamous cell cancer antigen) in the diagnosis of esophageal cancer patients. Dis Esophagus 25:242–249PubMedCrossRefGoogle Scholar
  23. 23.
    Esquivel-Velázquez M, Ostoa-Saloma P, Palacios-Arreola MI et al (2015) The role of cytokines in breast cancer development and progression. J Interferon Cytokine Res 35:1–16PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Nie Y, Erion DM, Yuan Z et al (2009) STAT3 inhibition of gluconeogenesis is downregulated by SirT1. Nat Cell Biol 11:492–500PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Lv C, Hu H-Y, Zhao L et al (2015) Intrathecal SRT1720, a SIRT1 agonist, exerts anti-hyperalgesic and anti-inflammatory effects on chronic constriction injury-induced neuropathic pain in rats. Int J Clin Exp Med 8:7152–7159PubMedPubMedCentralGoogle Scholar
  26. 26.
    Chen YX, Zhang M, Cai Y et al (2015) The Sirt1 activator SRT1720 attenuates angiotensin II-induced atherosclerosis in apoE−/− mice through inhibiting vascular inflammatory response. Biochem Biophysic Res Commun 4:732–738CrossRefGoogle Scholar
  27. 27.
    Serra V, Markman B, Scaltriti M et al (2014) NVP-BEZ-235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits growth of cancer cells with activating PI3K mutations. Cancer Res 68:8022–8030CrossRefGoogle Scholar
  28. 28.
    Lee M, Theodoropoulou M, Graw J et al (2011) Levels of p27 sensitize to dual PI3K/mTOR inhibition. Mol Cancer Ther 10:1450–1459PubMedCrossRefGoogle Scholar
  29. 29.
    Potiron VA, Abderrahmani R, Abderrhamani R et al (2013) Radiosensitization of prostate cancer cells by the dual PI3K/mTOR inhibitor BEZ235 under normoxic and hypoxic conditions. Radiother Oncol 106:138–146PubMedCrossRefGoogle Scholar
  30. 30.
    Nakatsura T, Shimomura M, Kobayashi K et al (2011) Growth inhibition by NVP-BEZ235, a dual PI3K/mTOR inhibitor, in hepatocellular carcinoma cell lines. Oncol Rep 26:1273–1279PubMedGoogle Scholar
  31. 31.
    Hong F, Larrea MD, Doughty C et al (2008) mTOR-raptor binds and activates SGK1 to regulate p27 phosphorylation. Mol Cell 30:701–711PubMedCrossRefGoogle Scholar
  32. 32.
    Wang Q, Horiatis D, Pinski J (2004) Interleukin-6 inhibits the growth of prostate cancer xenografts in mice by the process of neuroendocrine differentiation. Int J Cancer 111:508–513PubMedCrossRefGoogle Scholar
  33. 33.
    Mori S, Murakami-Mori K, Bonavida B (1999) Interleukin-6 induces G1Arrest through Induction of p27Kip1, a cyclin-dependent kinase inhibitor, and neuron-like morphology in LNCaP prostate tumor cells. Biochem Biophys Res Commun 257:609–614PubMedCrossRefGoogle Scholar
  34. 34.
    Sirotkin A (2016) The role and application of sirtuins and mTOR signaling in the control of ovarian functions. Cells 5:42–50PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Zhu L, Chiao CY, Enzer KG et al (2015) SIRT1 inactivation evokes antitumor activities in NSCLC through the tumor suppressor p27. Mol Cancer Res 13:41–49PubMedCrossRefGoogle Scholar
  36. 36.
    Cao Y-W, Li W-Q, Wan G-X et al (2014) Correlation and prognostic value of SIRT1 and Notch1 signaling in breast cancer. J Exp Clin Cancer Res 33:97–105PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Zhang W, Luo J, Yang F et al (2016) BRCA1 inhibits AR-mediated proliferation of breast cancer cells through the activation of SIRT1. Sci Rep 6:22034–22044PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Chini CCS, Espindola-Netto JM, Mondal G et al (2016) SIRT1-activating compounds (STAC) negatively regulate pancreatic cancer cell growth and viability through a SIRT1 lysosomal-dependent pathway. Clin Cancer Res 22:2496–2507PubMedCrossRefGoogle Scholar
  39. 39.
    Wong M, Polly P, Liu T (2015) The histone methyltransferase DOT1L: regulatory functions and a cancer therapy target. Am J Cancer Res 5:2823–2837PubMedPubMedCentralGoogle Scholar
  40. 40.
    Sansone P, Storci G, Tavolari S et al (2007) IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 117:3988–4002PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Naor D, Wallach-Dayan SB, Zahalka MA et al (2008) Involvement of CD44, a molecule with a thousand faces, in cancer dissemination. Cancer Biol 18:260–267CrossRefGoogle Scholar
  42. 42.
    Kristiansen G, Winzer KJ, Mayordomo E et al (2003) CD24 expression is a new prognostic marker in breast cancer. Clin Cancer Res 13:4906–4913Google Scholar
  43. 43.
    Jaggupilli A, Elkord E (2012) Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol 30:50–61Google Scholar
  44. 44.
    Tuccitto A, Tazzari M, Beretta V et al (2016) Immunomodulatory factors control the fate of melanoma tumor initiating cells. Stem Cells 34:2449–2460PubMedCrossRefGoogle Scholar
  45. 45.
    Guo Y, Xu F, Lu T et al (2012) Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 38:904–910PubMedCrossRefGoogle Scholar
  46. 46.
    Menaa C, Li JJ (2013) The role of radiotherapy-resistant stem cells in breast cancer recurrence. Breast Cancer Manag 2:89–92PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Medical Physics, Faculty of MedicineShahrekord University of Medical SciencesShahrekordIran
  2. 2.Medical Plants Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
  3. 3.Cellular and Molecular Research CenterShahrekord University of Medical SciencesShahrekordIran

Personalised recommendations