Advertisement

Molecular Biology Reports

, Volume 46, Issue 6, pp 6547–6556 | Cite as

Development and characterization of genomic microsatellite markers in the tree species, Rhodoleia championii, R. parvipetala, and R. forrestii (Hamamelidaceae)

  • Yanshuang Huang
  • Qianyi Yin
  • Van Truong Do
  • Kaikai Meng
  • Sufang Chen
  • Boyong LiaoEmail author
  • Qiang FanEmail author
Short Communication
  • 115 Downloads

Abstract

Rhodoleia Champion ex Hooker is one of the most primitive relict genera of Hamamelidaceae, a key family exploited to understand the origin and early evolution of flowering plants. Genomic simple sequence repeats (SSRs) were developed for R. championii to perform genetic diversity, phylogeographical structure or even systematic evolution studies of the genus. Among the 278,743 contigs (105,758,242 bps) de novo assembled from the low-coverage whole genome sequencing of R. championii, a total of 9106 SSRs were detected in 8370 contigs, and SSR primer pairs were successfully designed for 6677 SSRs. Among the 110 selected primer pairs, 41 were amplified successfully in the preliminary test of SSR screening. Further amplification of these 41 primer pairs across the 122 individuals collected from six populations of the three Rhodoleia species showed that 32 and 40 SSR markers can be amplified in Vietnam and Jinping populations of R. parvipetala, 41, 33, and 41 SSR markers in Boluo, Hongkong and Xinyi populations of R. championii, 25 SSR markers in Fugong population of R. forrestii, and 20 SSR markers demonstrated to be polymorphic across the three species. Genetic analysis for these 20 polymorphic SSRs showed that Allele number (A) ranged from four to 13 and polymorphic information content (PIC) ranged from 0.479 to 0.876 across the three species. At the population level, observed heterozygosity (HO) ranged from 0.000 to 1.000, and expected heterozygosity (HE) ranged from 0.091 to 0.851. In the present study, we provided the first whole-genome sequencing database for the species R. championii, identified ample SSR loci with designed primers, and revealed that 20 of the 110 selected SSRs were polymorphic across three Rhodoleia species. These provide valuable resources for future studies on genetic study, species delimitation, phylogeography, and conservation of this genus.

Keywords

Rhodoleia championii Hamamelidaceae Microsatellite Low-coverage whole genome sequencing 

Notes

Acknowledgements

We are grateful to Dr. Zhao Wanyi and Mr. Guo Xibing for their help in plant sampling. This work was supported by the National Natural Science Foundation of China (31670189,31800175, 31570195), Natural Science Foundation of Guangdong Province (2017A030310421, 2018A0303130109, 2018B030320001), the Fourth National Survey on Chinese Material Medical Resources Program for State Administration of Traditional Chinese Medicine of China (2017-152-003), Dongguan Municipal Project for Improvement of Social Science and Technology (2016108101018) and Chang Hungta Science Foundation of Sun Yat-sen University.

Author contributions

BL and QF designed the research. QF, QY, VD and YH collected samples. KM designed the primers. BL and YH generated the data. SC and BL analyzed and interpreted the data. YH wrote the manuscript, and all the authors modified the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11033_2019_5106_MOESM1_ESM.xlsx (17 kb)
Supplementary material 1 (XLSX 16 kb)
11033_2019_5106_MOESM2_ESM.xlsx (2 mb)
Supplementary material 2 (XLSX 2082 kb)
11033_2019_5106_MOESM3_ESM.xlsx (20 kb)
Supplementary material 3 (XLSX 19 kb)

References

  1. 1.
    Zhang HD (1962) Characteristics of flora in guangdong. Acta Sci Nat Universitatis Sunyatseni 1:1–34Google Scholar
  2. 2.
    Zhang ZY, Lu AM (1995) Hamamelidaceae: geographic distribution, fossil history and origin. Acta Phytotaxonomica Sin 33:313–339Google Scholar
  3. 3.
    Zhang ZY, Chang HY, Endress PK (2003) Hamamelidaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 9. Science Press. Beijing and Missouri Botanical Garden Press, St. Louis, pp 18–42Google Scholar
  4. 4.
    Wu ZY, Sun H, Zhou ZK, Li DZ, Peng H (2010) Floristics of seed plants from China. Science Press, BeijingGoogle Scholar
  5. 5.
    Vink W (1957) Hamamelidaceae. Flora Malesiana ser. 1, 5: 363-379Google Scholar
  6. 6.
    Zhu BZ, Xie JL, Zhang FQ, Pan W, Xu B, Wang YX, Wu YR (2010) Studies on morphological structure and flower stage of Rhodoleia plants in Guangdong. J South China Agric Univ 31(3):16–18.  https://doi.org/10.3724/SP.J.1238.2010.00569 CrossRefGoogle Scholar
  7. 7.
    Zhu BZ, Xu B, Zhang FQ, Pan W, Wang YX, Feng GQ, Xu P (2011) Morphological structure and classification of Rhodoleia flowers in Guangdong province. Guangdong Agric Sci 1:69–72.  https://doi.org/10.3969/j.issn.1004-874X.2011.01.025 CrossRefGoogle Scholar
  8. 8.
    Xu B, Zhu BZ, Zhang FQ, Pan W, Wang YX (2014) Genetic diversity analysis on Rhodoleia championii wild populations. Bull Bot Res 34(4):479–484Google Scholar
  9. 9.
    Liu T, Chen YY, Chao LF, Wang SQ, Wu W, Dai SP, Wang F, Fan Q, Zhou RC (2014) Extensive hybridization and introgression between Melastoma candidum and M. sanguineum. PLoS ONE 9(5):e96680.  https://doi.org/10.1371/journal.pone.0096680 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang R, Gong X, Folk R (2017) Evidence for continual hybridization rather than hybrid speciation between Ligularia duciformis and L. paradoxa (Asteraceae). PeerJ 5:e3884.  https://doi.org/10.7717/peerj.3884 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Huang CY, Yin QY, Khadka D, Meng KK, Fan Q, Chen SF, Liao WB (2019) Identification and development of microsatellite (SSRs) makers of Exbucklandia (HAMAMELIDACEAE) by high-throughput sequencing. Mol Biol Rep 46(3):3381–3386.  https://doi.org/10.1007/s11033-019-04800-z CrossRefPubMedGoogle Scholar
  12. 12.
    Yin QY, Huang CY, Huang YS, Chen SF, Ye HG, Fan Q, Liao WB (2018) Identification and development of microsatellite markers in Hamamelismollis (Hamamelidaceae). Appl Plant Sci 6(10):e01189.  https://doi.org/10.3732/apps.1600064 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Meng KK, Li MW, Fan Q, Tan WZ, Sun J, Liao WB, Chen SF (2016) Isolation and identification of EST-SSR markers in Chunia bucklandioides (Hamamelidaceae). Appl Plant Sci 4(10):1600064.  https://doi.org/10.3732/apps.1600064 CrossRefGoogle Scholar
  14. 14.
    Li ZZ, Tian H, Zhang JJ (2017) Characterization and development of EST-derived SSR markers in Sinowilsonia henryi (Hamamelidaceae). Appl Plant Sci 5(11):1700080.  https://doi.org/10.3732/apps.1700080 CrossRefGoogle Scholar
  15. 15.
    Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  16. 16.
    Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7:e30619.  https://doi.org/10.1371/journal.pone.0030619 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hernandez D, Francois P, Farinelli L, Osteras M, Schrenzel J (2008) De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res 18:802–809.  https://doi.org/10.1101/gr.072033.107 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rozen S, Skaletsky H (1999) Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz SA (eds) Methods in molecular biology, vol 132. bioinformatics: methods and protocols. Humana Press, Totowa, pp 365–386Google Scholar
  19. 19.
    Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Res 8(1):103–106.  https://doi.org/10.1111/j.1471-8286.2007.01931.x CrossRefGoogle Scholar
  20. 20.
    Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538.  https://doi.org/10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  21. 21.
    Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28:2537–2539.  https://doi.org/10.1111/j.1471-8286.2005.01155.x CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Marshall TC, Slate J, KruukL EB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655.  https://doi.org/10.1046/j.1365-294x.1998.00374.x CrossRefGoogle Scholar
  23. 23.
    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Earl Dent A, von Holdt Bridgett M (2012) Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361.  https://doi.org/10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  25. 25.
    Oginuma K, Tobe H (1991) Karyomorphology and evolution in some Hamamelidaceae and Platanaceae (Hamamelididae; Hamamelidales). Bot Magazine 104(2):115–135.  https://doi.org/10.1007/BF02493253 CrossRefGoogle Scholar
  26. 26.
    Hanson L, Boyd A, Johnson M, Bennett M (2005) First nuclear DNA C-values for 18 eudicot families. Ann Bot 96(7):1315–1320.  https://doi.org/10.1093/aob/mci283 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Bio-control and Guangdong Provincial Key Laboratory of Plant ResourcesSun Yat-sen UniversityGuangzhouChina
  2. 2.Department of BiologyVietnam National Museum of Nature, Vietnam Academy of Science and TechnologyCau GiayVietnam

Personalised recommendations