Advertisement

Evaluation of the CRISPR/Cas9 directed mutant TP53 gene repairing effect in human prostate cancer cell line PC-3

  • Muhammet Burak BatırEmail author
  • Ergin Şahin
  • Fethi Sırrı Çam
Original Article

Abstract

Prostate cancer is a common health problem among men worldwide and most of these prostate cancer cases are related to a dysfunctional mutant Tumor Protein p53 (TP53) gene. However, the CRISPR/Cas9 system can be used for repairing of a dysfunctional mutant TP53 gene in combination with donor single-stranded oligodeoxynucleotide (ssODN) via cells’ own homology-directed repair (HDR) mechanism. In this study, we aimed to evaluate the CRISPR/Cas9 repairing efficiency on TP53 414delC (p.K139fs*31) null mutation, located in the TP53 gene, of human prostate cancer cell line PC-3 in combination with ssODNs. According to the next-generation sequencing results, TP53 414delC mutation was repaired with an efficiency of 19.95% and 26.0% at the TP53 414delC position with ssODN1 and ssODN2 accompanied by sgRNA2 guided CRISPR/Cas9, respectively. Besides, qPCR and immunofluorescence analysis showed that PC-3 cells, the TP53 414delC mutation of which were repaired, expressed wild type p53 again. Also, significantly increased number of apoptotic cells, driven by the repaired TP53 gene were detected compared to the control cells by flow cytometry analysis. As a result, sgRNA2 guided CRISPR/Cas9 system accompanied by ssODN was shown to effectively repair the TP53 414delC gene region and inhibit the cell proliferation of PC-3 cells. Therefore, the effects of the TP53 414delC mutation repairment in PC-3 cells will be investigated in the in vivo models for tumor clearance analysis in the near future.

Keywords

CRISPR/Cas9 Prostate cancer TP53 gene p53 Homology-directed repair (HDR) 

Notes

Funding

This research was financially supported by the Scientific Investigation Department of Manisa Celal Bayar University with the project number FEF 2017-144.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, Gavin A, Visser O, Bray F (2018) Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer 103:356–387CrossRefGoogle Scholar
  2. 2.
    Herceg Z, Hainaut P (2007) Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. Mol Oncol 1(1):26–41CrossRefGoogle Scholar
  3. 3.
    Rivlin N, Brosh R, Oren M, Rotter V (2011) Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer 2(4):466–474.  https://doi.org/10.1177/1947601911408889 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Vazquez A, Bond EE, Levine AJ, Bond GL (2008) The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov 7(12):979–987.  https://doi.org/10.1038/nrd2656 CrossRefPubMedGoogle Scholar
  5. 5.
    Petitjean A, Achatz MIW, Borresen-Dale AL, Hainaut P, Olivier M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26(15):2157–2165CrossRefGoogle Scholar
  6. 6.
    Bykov VJN, Zhang Q, Zhang MQZ, Ceder S, Abrahmsen L, Wiman KG (2016) Targeting of mutant p53 and the cellular redox balance by APR-246 as a strategy for efficient cancer therapy. Front Oncol 6:21CrossRefGoogle Scholar
  7. 7.
    Selivanova G, Wiman KG (2007) Reactivation of mutant p53: molecular mechanisms and therapeutic potential. Oncogene 26(15):2243–2254CrossRefGoogle Scholar
  8. 8.
    Hong B, van den Heuvel APJ, Prabhu VV, Zhang SL, El-Deiry WS (2014) Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities. Curr Drug Targets 15(1):80–89CrossRefGoogle Scholar
  9. 9.
    Senzer N, Nemunaitis J, Nemunaitis M, Lamont J, Gore M, Gabra H, Eeles R, Sodha N, Lynch FJ, Zumstein LA, Menander KB, Sobol RE, Chada S (2007) p53 therapy in a patient with Li-Fraumeni syndrome. Mol Cancer Ther 6(5):1478–1482CrossRefGoogle Scholar
  10. 10.
    Bialk P, Rivera-Torres N, Strouse B, Kmiec EB (2015) Regulation of Gene Editing Activity Directed by Single-Stranded Oligonucleotides and CRISPR/Cas9 Systems. Plos ONE 10(6):e0129308CrossRefGoogle Scholar
  11. 11.
    Gupta RM, Musunuru K (2014) Expanding the genetic editing tool kit: zFNs, TALENs, and CRISPR-Cas9. J Clin Invest 124(10):4154–4161CrossRefGoogle Scholar
  12. 12.
    Mou HW, Kennedy Z, Anderson DG, Yin H, Xue W (2015) Precision cancer mouse models through genome editing with CRISPR-Cas9. Genome Med 7:53CrossRefGoogle Scholar
  13. 13.
    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308CrossRefGoogle Scholar
  14. 14.
    Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J (2018) CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 24(7):927CrossRefGoogle Scholar
  15. 15.
    Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, Kommineni S, Chen J, Sondey M, Ye CY, Randhawa R, Kulkarni T, Yang Z, McAllister G, Russ C, Reece-Hoyes J, Forrester W, Hoffman GR, Dolmetsch R, Kaykas A (2018) p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med 24(7):939CrossRefGoogle Scholar
  16. 16.
    Kwart D, Paquet D, Teo S, Tessier-Lavigne M (2017) Precise and efficient scarless genome editing in stem cells using CORRECT. Nat Protoc 12(2):329–354CrossRefGoogle Scholar
  17. 17.
    Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier-Lavigne M (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533(7601):125CrossRefGoogle Scholar
  18. 18.
    Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  19. 19.
    Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ (2010) A rapid and general assay for monitoring endogenous gene modification. Methods Mol Biol 649:247–256.  https://doi.org/10.1007/978-1-60761-753-2_15 CrossRefGoogle Scholar
  20. 20.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25(4):402–408CrossRefGoogle Scholar
  21. 21.
    Song F, Stieger K (2017) Optimizing the DNA donor template for homology-directed repair of double-strand breaks. Mol Ther 7:53–60Google Scholar
  22. 22.
    Li LH, Sen A, Murphy SP, Jahreis GP, Fuji H, Hui SW (1999) Apoptosis induced by DNA uptake limits transfection efficiency. Exp Cell Res 253(2):541–550CrossRefGoogle Scholar
  23. 23.
    Chen JD (2016) The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Csh Perspect Med.  https://doi.org/10.1101/cshperspect.a026104 CrossRefGoogle Scholar
  24. 24.
    Janic A, Valente LJ, Wakefield MJ, Di Stefano L, Milla L, Wilcox S, Yang HY, Tai L, Vandenberg CJ, Kueh AJ, Mizutani S, Brennan MS, Schenk RL, Lindqvist LM, Papenfuss AT, O’Connor L, Strasser A, Herold MJ (2018) DNA repair processes are critical mediators of p53-dependent tumor suppression. Nat Med 24(7):947CrossRefGoogle Scholar
  25. 25.
    Suzuki K, Matsubara H (2011) Recent advances in p53 research and cancer treatment. J Biomed Biotechnol.  https://doi.org/10.1155/2011/978312 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhang WW, Li LJ, Li DG, Liu JL, Li XQ, Li W, Xu XL, Zhang MJ, Chandler LA, Lin H, Hu AG, Xu W, Lam DMK (2018) The first approved gene therapy product for cancer Ad-p53 (gendicine): 12 years in the clinic. Hum Gene Ther 29(2):160–179CrossRefGoogle Scholar
  27. 27.
    Rossi A, Kontarakis Z, Gerri C, Nolte H, Holper S, Kruger M, Stainier DYR (2015) Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524(7564):230CrossRefGoogle Scholar
  28. 28.
    Lawhorn IEB, Ferreira JP, Wang CL (2014) Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53. Plos ONE 9(11):e113232CrossRefGoogle Scholar
  29. 29.
    Wang YB, Wang YJ, Chang T, Huang H, Yee JK (2017) Integration-defective lentiviral vector mediates efficient gene editing through homology-directed repair in human embryonic stem cells. Nucleic Acids Res 45(5):e29CrossRefGoogle Scholar
  30. 30.
    Nishiyama J, Mikuni T, Yasuda R (2017) Virus-mediated genome editing via homology-directed repair in mitotic and postmitotic cells in mammalian brain. Neuron 96(4):755–768CrossRefGoogle Scholar
  31. 31.
    Sternberg SH, Doudna JA (2015) Expanding the biologist’s toolkit with CRISPR-Cas9. Mol Cell 58(4):568–574CrossRefGoogle Scholar
  32. 32.
    Sheridan C (2018) Go-ahead for first in-body CRISPR medicine testing. Nat Biotechnol.  https://doi.org/10.1038/d41587-018-00003-2 CrossRefPubMedGoogle Scholar
  33. 33.
    Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS, Bumcrot D, Chao H, Ciulla DM, DaSilva JA, Dass A, Dhanapal V, Fennell TJ, Friedland AE, Giannoukos G, Gloskowski SW, Glucksmann A, Gotta GM, Jayaram H, Haskett SJ, Hopkins B, Horng JE, Joshi S, Marco E, Mepani R, Reyon D, Ta T, Tabbaa DG, Samuelsson SJ, Shen S, Skor MN, Stetkiewicz P, Wang T, Yudkoff C, Myer VE, Albright CF, Jiang H (2019) Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med 25(2):229–233CrossRefGoogle Scholar
  34. 34.
    Baylis F, McLeod M (2018) First-in-human phase 1 CRISPR gene editing cancer trials: are we ready? Curr Gene Ther.  https://doi.org/10.2174/1566523217666171121165935 CrossRefGoogle Scholar
  35. 35.
    Chira S, Gulei D, Hajitou A, Berindan-Neagoe I (2018) Restoring the p53 ‘Guardian’ phenotype in p53-deficient tumor cells with CRISPR/Cas9. Trends Biotechnol 36(7):653–660CrossRefGoogle Scholar
  36. 36.
    Sayroo R, Nolasco D, Yin Z, Colon-Cortes Y, Pandya M, Ling C, Aslanidi G (2015) Development of novel AAV serotype 6 based vectors with selective tropism for human cancer cells. Gene Ther 23(1):18–25CrossRefGoogle Scholar
  37. 37.
    Groner B, Weiss A (2014) Targeting survivin in cancer: novel drug development approaches. Biodrugs 28(1):27–39CrossRefGoogle Scholar
  38. 38.
    Zhou JK, Wang JY, Shen B, Chen L, Su Y, Yang J, Zhang WS, Tian XM, Huang XX (2014) Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting. FEBS J 281(7):1717–1725CrossRefGoogle Scholar
  39. 39.
    Campa CC, Weisbach NR, Santinha AJ, Incarnato D, Platt RJ (2019) Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat Methods.  https://doi.org/10.1038/s41592-019-0508-6 CrossRefPubMedGoogle Scholar
  40. 40.
    Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM, Chuck J, Tan D, Knott GJ, Harrington LB, Al-Shayeb B, Wagner A, Brotzmann J, Staahl BT, Taylor KL, Desmarais J, Nogales E, Doudna JA (2019) CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566(7743):218CrossRefGoogle Scholar
  41. 41.
    Strohkendl I, Saifuddin FA, Rybarski JR, Finkelstein IJ, Russell R (2018) Kinetic basis for DNA target specificity of CRISPR-Cas12a. Mol Cell 71(5):816–824CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biology, Faculty of Science and LettersManisa Celal Bayar UniversityManisaTurkey
  2. 2.Department of Biology, Faculty of ScienceAnkara UniversityAnkaraTurkey
  3. 3.Department of Medical Genetics, Faculty of MedicineManisa Celal Bayar UniversityManisaTurkey

Personalised recommendations