Advertisement

Molecular Biology Reports

, Volume 46, Issue 6, pp 6399–6404 | Cite as

Aberrant expression of long noncoding RNAs in the serum and myocardium of spontaneous hypertensive rats

  • Yuanjun Wu
  • Zheng Zhang
  • Shufan Ren
  • Kexin Li
  • Qilan Ning
  • Xiaoying JiangEmail author
Original Article
  • 70 Downloads

Abstract

Circulating long noncoding RNAs as biomarkers of diseases have attracted increasing attention recently. However, circulating lncRNAs in hypertension is still unexplored niche. The levels of lncRNAs GAS5, NR024118, MRAK134679, AX765700 and MRNR026574 were measured in the serum and myocardium of hypertensive rats and normal controls with real time PCR. The levels of GAS5 were significantly higher both in the myocardium (P = 0.0067) and serum (P < 0.0001) of hypertensive rats compared with controls. The levels of NR024118 were remarkably higher in the myocardium of hypertensive rats (P = 0.0202) while the levels of serum NR024118 were not statistically significant in two groups (P = 0.6926). The levels of serum AX765700 (P = 0.0644) and cardiac AX765700 (P = 0.1938) were not statistically significant in hypertensive rats and controls. The levels of MRAK134679 were not different in the myocardium of two groups (P = 0.1692) and were too low in the serum to be detected. The levels of MRNR026574 were significantly higher in the myocardium of hypertensive rats compared with controls (P < 0.0001) and were too low in the serum to be detected. In conclusions, the levels of GAS5, NR024118 and MRNR026574 were increased in the myocardium of hypertensive rats, suggesting that they participate in the pathogenesis of hypertensive cardiac remodeling. Although, the levels of GAS5 in the serum and heart tissue were both significantly increased in SH rats, the potential biomarker capacity of GAS5 for HT needs to be further explored on larger human cohorts.

Keywords

GAS5 NR024118 MRAK134679 AX765700 MRNR026574 Hypertension 

Notes

Acknowledgements

This study was supported by National Science Foundation of China (31100834) and the International Cooperation Founds of Shaanxi Province (2012KW-32-02).

Funding

National Science Foundation of China (31100834). International Cooperation Founds of Shaanxi Province (2012KW-32-02).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Jiang X, Zhang F (2017) Long noncoding RNA: a new contributor and potential therapeutic target in fibrosis. Epigenomics 9(9):1233–1241CrossRefGoogle Scholar
  2. 2.
    Goff LA, Groff AF, Sauvageau M, Trayes-Gibson Z, Sanchez-Gomez DB, Morse M et al (2015) Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA 112(22):6855–6862CrossRefGoogle Scholar
  3. 3.
    Engreitz JM, Haines JE, Perez EM, Munson G, Chen J, Kane M et al (2016) Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 539(7629):452–455CrossRefGoogle Scholar
  4. 4.
    Zhu M, Liu J, Xiao J, Yang L, Cai M, Shen H et al (2017) Lnc-mg is a long non-coding RNA that promotes myogenesis. Nat Commun 8:14718CrossRefGoogle Scholar
  5. 5.
    Cesnik AJ, Yang B, Truong A, Etheridge T, Spiniello M, Steinbrink MI et al (2018) Long noncoding RNAs AC009014.3 and newly discovered XPLAID differentiate aggressive and indolent prostate cancers. Transl Oncol 11(3):808–814CrossRefGoogle Scholar
  6. 6.
    Cremer S, Michalik KM, Fischer A, Pfisterer L, Jaé N, Winter C et al (2019) Hematopoietic deficiency of the long noncoding RNA MALAT1 promotes atherosclerosis and plaque inflammation. Circulation 139(10):1320–1334CrossRefGoogle Scholar
  7. 7.
    Ponnusamy M, Liu F, Zhang YH, Li RB, Zhai M, Liu F et al (2019) Long non-coding RNA CPR (cardiomyocyte proliferation regulator) regulates cardiomyocyte proliferation and cardiac repair. Circulation 139(23):2668–2684CrossRefGoogle Scholar
  8. 8.
    Lai CF, Chen YT, Gu J, Nerbonne JM, Lin CH, Yang K (2019) Circulating long noncoding RNA DKFZP434I0714 predicts adverse cardiovascular outcomes in patients with end-stage renal disease. Int J Cardiol 277:212–219CrossRefGoogle Scholar
  9. 9.
    Murakami K (2015) Non-coding RNAs and hypertension-unveiling unexpected mechanisms of hypertension by the dark matter of the genome. Curr Hypertens Rev 11(2):80–90CrossRefGoogle Scholar
  10. 10.
    Jackson KL, Marques FZ, Lim K, Davern PJ, Head GA (2018) Circadian differences in the contribution of the brain renin-angiotensin system in genetically hypertensive mice. Front Physiol 9:231CrossRefGoogle Scholar
  11. 11.
    Kan C, Cao J, Hou J, Jing X, Zhu Y, Zhang J et al (2019) Correlation of miR-21 and BNP with pregnancy-induced hypertension complicated with heart failure and the diagnostic value. Exp Ther Med 17(4):3129–3135PubMedPubMedCentralGoogle Scholar
  12. 12.
    Baker MA, Wang F, Liu Y, Kriegel AJ, Geurts AM, Usa K et al (2019) MiR-192-5p in the kidney protects against the development of hypertension. Hypertension 73(2):399–406CrossRefGoogle Scholar
  13. 13.
    Jusic A, Devaux Y, EU-CardioRNA COST Action (CA17129) (2019) Noncoding RNAs in hypertension. Hypertension 74(3):477–492CrossRefGoogle Scholar
  14. 14.
    Yao QP, Xie ZW, Wang KX, Zhang P, Han Y, Qi YX et al (2017) Profiles of long noncoding RNAs in hypertensive rats: long noncoding RNA XR007793 regulates cyclic strain-induced proliferation and migration of vascular smooth muscle cells. J Hypertens 35(6):1195–1203CrossRefGoogle Scholar
  15. 15.
    Jin L, Lin X, Yang L, Fan X, Wang W, Li S et al (2018) AK098656, a novel vascular smooth muscle cell-dominant long noncoding RNA, promotes hypertension. Hypertension 71(2):262–272CrossRefGoogle Scholar
  16. 16.
    Zhang H, Liu Y, Yan L, Wang S, Zhang M, Ma C et al (2019) Long noncoding RNA Hoxaas3 contributes to hypoxia-induced pulmonary artery smooth muscle cell proliferation. Cardiovasc Res 115(3):647–657CrossRefGoogle Scholar
  17. 17.
    Su H, Xu X, Yan C, Shi Y, Hu Y, Dong L et al (2018) LncRNA H19 promotes the proliferation of pulmonary artery smooth muscle cells through AT1R via sponging let-7b in monocrotaline-induced pulmonary arterial hypertension. Respir Res 19(1):254CrossRefGoogle Scholar
  18. 18.
    Avgeris M, Tsilimantou A, Levis PK, Tokas T, Sideris DC, Stravodimos K et al (2018) Loss of GAS5 tumour suppressor lncRNA: an independent molecular cancer biomarker for short-term relapse and progression in bladder cancer patients. Br J Cancer 119(12):1477–1486CrossRefGoogle Scholar
  19. 19.
    Zeng B, Li Y, Jiang F, Wei C, Chen G, Zhang W et al (2019) LncRNA GAS5 suppresses proliferation, migration, invasion, and epithelial-mesenchymal transition in oral squamous cell carcinoma by regulating the miR-21/PTEN axis. Exp Cell Res 374(2):365–373CrossRefGoogle Scholar
  20. 20.
    Li S, Zhou J, Wang Z, Wang P, Gao X, Wang Y (2018) Long noncoding RNA GAS5 suppresses triple negative breast cancer progression through inhibition of proliferation and invasion by competitively binding miR-196a-5p. Biomed Pharmacother 104:451–457CrossRefGoogle Scholar
  21. 21.
    Zhang XF, Ye Y, Zhao SJ (2017) LncRNA Gas5 acts as a ceRNA to regulate PTEN expression by sponging miR-222-3p in papillary thyroid carcinoma. Oncotarget 9(3):3519–3530PubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang XY, Tang XY, Li N, Zhao LM, Guo YL, Li XS et al (2018) GAS5 promotes airway smooth muscle cell proliferation in asthma via controlling miR-10a/BDNF signaling pathway. Life Sci 212:93–101CrossRefGoogle Scholar
  23. 23.
    Li W, Zhao W, Lu Z, Zhang W, Yang X (2018) Long noncoding RNA GAS5 promotes proliferation, migration, and invasion by regulation of miR-301a in esophageal cancer. Oncol Res 26(8):1285–1294CrossRefGoogle Scholar
  24. 24.
    Liu L, Meng T, Yang XH, Sayim P, Lei C, Jin B et al (2018) Prognostic and predictive value of long non-coding RNA GAS5 and mircoRNA-221 in colorectal cancer and their effects on colorectal cancer cell proliferation, migration and invasion. Cancer Biomark 22(2):283–299CrossRefGoogle Scholar
  25. 25.
    Yin Q, Wu A, Liu M (2017) Plasma long non-coding RNA (lncRNA) GAS5 is a new biomarker for coronary artery disease. Med Sci Monit 23:6042–6048CrossRefGoogle Scholar
  26. 26.
    Wang YN, Shan K, Yao MD, Yao J, Wang JJ, Li X et al (2016) Long noncoding RNA-GAS5: a novel regulator of hypertension-induced vascular remodeling. Hypertension 68(3):736–748CrossRefGoogle Scholar
  27. 27.
    Jiang X, Zhang F, Ning Q (2015) Losartan reverses the down-expression of long noncoding RNA-NR024118 and Cdkn1c induced by angiotensinII in adult rat cardiac fibroblasts. Pathol Biol 63(3):122–125CrossRefGoogle Scholar
  28. 28.
    Yang K, Chen D (2015) Shikonin inhibits inflammatory response in rheumatoid arthritis synovial fibroblasts via lncRNA-NR024118. Evid Based Complement Alternat Med 2015:631737PubMedPubMedCentralGoogle Scholar
  29. 29.
    Jiang X, Ning Q (2014) Expression profiling of long noncoding RNAs and the dynamic changes of lncRNA-NR024118 and Cdkn1c in angiotensin II-treated cardiac fibroblasts. Int J Clin Exp Pathol 7(4):1325–1336PubMedPubMedCentralGoogle Scholar
  30. 30.
    Das S, Zhang E, Senapati P, Amaram V, Reddy MA, Stapleton K et al (2018) A novel angiotensin II-induced long noncoding RNA giver regulates oxidative stress, inflammation, and proliferation in vascular smooth muscle cells. Circ Res 123(12):1298–1312CrossRefGoogle Scholar
  31. 31.
    Li H, Liu X, Zhang L, Li X (2017) LncRNA BANCR facilitates vascular smooth muscle cell proliferation and migration through JNK pathway. Oncotarget 8(70):114568–114575PubMedPubMedCentralGoogle Scholar
  32. 32.
    Oldham WM (2018) The long noncoding RNA LnRPT puts the brakes on pulmonary artery smooth muscle cell proliferation. Am J Respir Cell Mol Biol 58(2):138–139CrossRefGoogle Scholar
  33. 33.
    Tao H, Zhang JG, Qin RH, Dai C, Shi P, Yang JJ et al (2017) LncRNA GAS5 controls cardiac fibroblast activation and fibrosis by targeting miR-21 via PTEN/MMP-2 signaling pathway. Toxicology 386:11–18CrossRefGoogle Scholar
  34. 34.
    Lv H, Tong J, Yang J, Lv S, Li WP, Zhang C et al (2018) Dysregulated pseudogene HK2P1 may contribute to preeclampsia as a competing endogenous RNA for hexokinase 2 by impairing decidualization. Hypertension 71(4):648–658CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Yuanjun Wu
    • 1
  • Zheng Zhang
    • 1
  • Shufan Ren
    • 1
  • Kexin Li
    • 1
  • Qilan Ning
    • 2
  • Xiaoying Jiang
    • 2
    Email author
  1. 1.Health Science CenterXi’an Jiaotong UniversityXi’anChina
  2. 2.Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina

Personalised recommendations