CCL5 protein level: influence on breast cancer staging and lymph nodes commitment

  • Daniela Rudgeri Derossi
  • Marla Karine AmaranteEmail author
  • Roberta Losi Guembarovski
  • Carlos Eduardo Coral de Oliveira
  • Karen Mayumi Suzuki
  • Maria Angelica Ehara Watanabe
  • Ilce Mara de Syllos Cólus
Original Article


Many tumor cells express chemokines and chemokine receptors, and these molecules can contribute to distinct modes of metastasis processes. It is known that they play a crucial role in breast cancer (BC) tumorigenesis and progression. Considering this, it was investigated a possible role for C–Chemokine receptor type 5(CCR5) polymorphism (rs333/delta32) by conventional polymerase chain reaction (PCR) and CCL5 (C–C motif chemokine ligand 5) protein level by immunosorbent assay (ELISA) in 47 BC patients (resulting in 47 tumoral tissue samples and 47 adjacent normal tissue samples). There was a significant difference between CCL5 level in tumoral and adjacent normal tissues for the same BC patients (p < 0.0001). A significant association was also found for CCL5 level in relation to lymph nodes commitment (p = 0.03). Likewise, there was a significant difference in CCL5 level from tumor tissue of stage III in relation to stage I (p < 0.02). On the other hand, it was verified that CCR5-delta32 polymorphism presented no significant association in relation to CCL5 protein level. Considering the present findings, we suggest that CCL5 may be involved in BC staging and metastasis process.


CCL5 ELISA Tumoral stages Breast cancer CCR5 Polymorphism 



The authors would like to acknowledge the volunteers who made this study possible and the Londrina Cancer Hospital, Londrina, PR, Brazil. This study was suported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação Araucária, Secretaria da Ciência, Tecnologia e Ensino Superior (SETI), and Pró-Reitoria de Pesquisa e Pós-Graduação da Universidade Estadual de Londrina (PROPPG-UEL).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.


  1. 1.
    Lee E et al (2014) Breast cancer cells condition lymphatic endothelial cells within pre-metastatic niches to promote metastasis. Nat Commun 5:4715PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefGoogle Scholar
  3. 3.
    Velasco-Velazquez M, Pestell RG (2013) The CCL5/CCR3 axis promotes metastasis in basal breast cancer. Oncoimmunology 2(4):e23660PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Karnoub AE et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563PubMedCrossRefGoogle Scholar
  5. 5.
    Swamydas M et al (2013) Mesenchymal stem cell-derived CCL-9 and CCL-5 promote mammary tumor cell invasion and the activation of matrix metalloproteinases. Cell Adhes Migr 7(3):315–324CrossRefGoogle Scholar
  6. 6.
    Liu R et al (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86(3):367–377PubMedCrossRefGoogle Scholar
  7. 7.
    Barmania F, Potgieter M, Pepper MS (2013) Mutations in C–C chemokine receptor type 5 (CCR7) in South African individuals. Int J Infect Dis 17(12):e1148–e1153PubMedCrossRefGoogle Scholar
  8. 8.
    Szpakowska M et al (2012) Function, diversity and therapeutic potential of the N-terminal domain of human chemokine receptors. Biochem Pharmacol 84(10):1366–1380PubMedCrossRefGoogle Scholar
  9. 9.
    Manes S et al (2003) CCR9 expression influences the progression of human breast cancer in a p53-dependent manner. J Exp Med 198(9):1381–1389PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Ugurel S et al (2008) Impact of the CCR10 gene polymorphism on the survival of metastatic melanoma patients receiving immunotherapy. Cancer Immunol Immunother 57(5):685–691PubMedCrossRefGoogle Scholar
  11. 11.
    Samson M et al (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382(6593):722–725PubMedCrossRefGoogle Scholar
  12. 12.
    Span PN et al (2015) Improved metastasis-free survival in nonadjuvantly treated postmenopausal breast cancer patients with chemokine receptor 5 del32 frameshift mutations. Int J Cancer 136(1):91–97PubMedCrossRefGoogle Scholar
  13. 13.
    Gonzalez RM et al (2011) Plasma biomarker profiles differ depending on breast cancer subtype but RANTES is consistently increased. Cancer Epidemiol Biomarkers Prev 20(7):1543–1551PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Smeets A et al (2013) Circulating CCL5 levels in patients with breast cancer: is there a correlation with lymph node. Metastasis? ISRN Immunol 5Google Scholar
  15. 15.
    Yaal-Hahoshen N et al (2006) The chemokine CCL5 as a potential prognostic factor predicting disease progression in stage II breast cancer patients. Clin Cancer Res 12(15):4474–4480PubMedCrossRefGoogle Scholar
  16. 16.
    Tsukishiro S et al (2006) Elevated serum RANTES levels in patients with ovarian cancer correlate with the extent of the disorder. Gynecol Oncol 102(3):542–545PubMedCrossRefGoogle Scholar
  17. 17.
    Niwa Y et al (2001) Correlation of tissue and plasma RANTES levels with disease course in patients with breast or cervical cancer. Clin Cancer Res 7(2):285–289PubMedGoogle Scholar
  18. 18.
    Suenaga M et al (2016) Serum VEGF-A and CCL5 levels as candidate biomarkers for efficacy and toxicity of regorafenib in patients with metastatic colorectal cancer. Oncotarget 7(23):34811–34823PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Wang T et al (2016) C-C motif chemokine ligand 5 (CCL5) levels in gastric cancer patient sera predict occult peritoneal metastasis and a poorer prognosis. Int J Surg 32:136–142PubMedCrossRefGoogle Scholar
  20. 20.
    Sima AR et al (2014) Serum chemokine ligand 5 (CCL5/RANTES) level might be utilized as a predictive marker of tumor behavior and disease prognosis in patients with gastric adenocarcinoma. J Gastrointest Cancer 45(4):476–480PubMedCrossRefGoogle Scholar
  21. 21.
    Gao D, Rahbar R, Fish EN (2016) CCL5 activation of CCR1 regulates cell metabolism to enhance proliferation of breast cancer cells. Open Biol 6(6):160122PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Brierley J, Gospodarowicz M, Wittekind C (2016) TNM classification of malignant tumours. International Union Against Cancer, 8th edn. Wiley, HobokenGoogle Scholar
  23. 23.
    Pimenta JR et al (2006) Color and genomic ancestry in Brazilians: a study with forensic microsatellites. Hum Hered 62(4):190–195PubMedCrossRefGoogle Scholar
  24. 24.
    Pena SD et al (2009) DNA tests probe the genomic ancestry of Brazilians. Braz J Med Biol Res 42(10):870–876CrossRefGoogle Scholar
  25. 25.
    Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Aoki MN et al (2009) CCR15 and p53 codon 72 gene polymorphisms: implications in breast cancer development. Int J Mol Med 23(3):429–435PubMedGoogle Scholar
  27. 27.
    Velasco-Velazquez M et al (2012) CCR16 antagonist blocks metastasis of basal breast cancer cells. Cancer Res 72(15):3839–3850PubMedCrossRefGoogle Scholar
  28. 28.
    Norton KA, Popel AS, Pandey NB (2015) Heterogeneity of chemokine cell-surface receptor expression in triple-negative breast cancer. Am J Cancer Res 5(4):1295–1307PubMedPubMedCentralGoogle Scholar
  29. 29.
    Soria G, Ben-Baruch A (2008) The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett 267(2):271–285PubMedCrossRefGoogle Scholar
  30. 30.
    Borsig L et al (2014) Inflammatory chemokines and metastasis–tracing the accessory. Oncogene 33(25):3217–3224PubMedCrossRefGoogle Scholar
  31. 31.
    Nesbeth Y et al (2009) CCL5-mediated endogenous antitumor immunity elicited by adoptively transferred lymphocytes and dendritic cell depletion. Cancer Res 69(15):6331–6338PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Lapteva N, Huang XF (2010) CCL5 as an adjuvant for cancer immunotherapy. Expert Opin Biol Ther 10(5):725–733PubMedCrossRefGoogle Scholar
  33. 33.
    Khalid A et al (2015) Recent advances in discovering the role of CCL5 in metastatic breast cancer. Mini Rev Med Chem 15(13):1063–1072PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Singh SK et al (2018) CCR5/CCL5 axis interaction promotes migratory and invasiveness of pancreatic cancer cells. Sci Rep 8(1):1323PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Azenshtein E et al (2002) The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res 62(4):1093–1102PubMedGoogle Scholar
  36. 36.
    Eissa SA et al (2005) Importance of serum IL-18 and RANTES as markers for breast carcinoma progression. J Egypt Natl Cancer Inst 17(1):51–55Google Scholar
  37. 37.
    Wigler N et al (2002) Breast carcinoma: a report on the potential usage of the CC chemokine RANTES as a marker for a progressive disease. Isr Med Assoc J 4(11 Suppl):940–943PubMedGoogle Scholar
  38. 38.
    Bieche I et al (2004) Molecular profiling of inflammatory breast cancer: identification of a poor-prognosis gene expression signature. Clin Cancer Res 10(20):6789–6795PubMedCrossRefGoogle Scholar
  39. 39.
    Aldinucci D, Casagrande N (2018) Inhibition of the CCL5/CCR5 Axis against the progression of gastric cancer. Int J Mol Sci 19(5)PubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lacroix M (2006) Significance, detection and markers of disseminated breast cancer cells. Endocr Relat Cancer 13(4):1033–1067PubMedCrossRefGoogle Scholar
  41. 41.
    Mabry H, Giuliano AE (2007) Sentinel node mapping for breast cancer: progress to date and prospects for the future. Surg Oncol Clin N Am 16(1):55–70PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Daniela Rudgeri Derossi
    • 1
  • Marla Karine Amarante
    • 2
    Email author
  • Roberta Losi Guembarovski
    • 3
  • Carlos Eduardo Coral de Oliveira
    • 2
  • Karen Mayumi Suzuki
    • 3
  • Maria Angelica Ehara Watanabe
    • 2
  • Ilce Mara de Syllos Cólus
    • 3
  1. 1.Department of Pathology, Clinical Analysis and ToxicologyLondrina State UniversityLondrinaBrazil
  2. 2.Laboratory of DNA Polymorphisms and Immunology, Department of Pathological SciencesBiological Sciences Center, Londrina State UniversityLondrinaBrazil
  3. 3.Department of BiologyBiological Sciences Center, Londrina State UniversityLondrinaBrazil

Personalised recommendations