Advertisement

Molecular Biology Reports

, Volume 46, Issue 6, pp 6135–6146 | Cite as

The effects of transplanted mesenchymal stem cells treated with 17-b estradiol on experimental autoimmune encephalomyelitis

  • Rahim Heidari Barchi Nezhad
  • Fateme Asadi
  • Seyyed Meysam Abtahi Froushani
  • Gholamhossein Hassanshahi
  • Ayat Kaeidi
  • Soudeh Khanamani Falahati-pour
  • Zahra Hashemi
  • Mohammad Reza MirzaeiEmail author
Original Article
  • 95 Downloads

Abstract

The present study was conducted aimed at exploring the modulatory effects of 17-b estradiol (17-bED) on mesenchymal stem cells (MSCs) in the EAE (experimental autoimmune encephalomyelitis) animal model of multiple sclerosis (MS). Following the isolation of bone marrow-derived MSCs from the bilateral femurs and tibias of the male Wistar rats, the cells were harvested and cultured in the presence of 100 nM 17-bED for 24 h. EAE was induced in male Wistar rats (8–12 weeks old) using guinea pig spinal cord homogenate, in combination with the complete Freund’s adjuvant. The MSC therapy was triggered when all of the animals obtained a disability score. The symptoms were monitored on a daily basis throughout the study until the rats were euthanized. The mRNA expression of cytokines, including IL-17, IFN-γ, TNF-α, IL-10, IL-4, and TGF-β together with MMP8 and MMP9 as the family members of matrix metalloproteinases (MMPs) in the brain and spinal cord tissues were examined using real-time PCR. The levels of splenocytes-originated IL-10 and IFN-γ cytokines were also measured by ELISA. The MTT-based research findings showed that the infiltration of lymphocytes into the spleen decreased considerably. It was also observed that the mRNA expression of proinflammatory cytokines decreased significantly, while the mRNA levels of anti-inflammatory cytokines increased remarkably. It was also found that the mRNA levels of the examined matrix metalloproteinases (MMP8 and MMP9) were downregulated significantly. The findings of the present study indicated that the administration of 17-bED enhanced the efficacy of MSCs transplantation and modulated immune responses relatively in the EAE model, via the regulation of either pro- or anti-inflammatory cytokines and matrix metalloproteinases.

Keywords

17-b estradiol Mesenchymal stem cells Experimental autoimmune encephalomyelitis Multiple sclerosis 

Notes

Acknowledgements

The authors would like to express their sincere gratitude to Rafsanjan University of Medical Sciences, Rafsanjan, Iran, for its great support of this study.

Funding

This study was supported by the RUMS by the Grant Number “1396.11.7-1535” and ethical code “IR.RUMS.REC.1396.165” from the Rafsanjan University of Medical Sciences.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

References

  1. 1.
    Zorzon M, Zivadinov R, Nasuelli D, Dolfini P, Bosco A, Bratina A, Tommasi M, Locatelli L, Cazzato G (2003) Risk factors of multiple sclerosis: a case–control study. Neurol Sci 24(4):242–247PubMedGoogle Scholar
  2. 2.
    Batoulis H, Addicks K, Kuerten S (2010) Emerging concepts in autoimmune encephalomyelitis beyond the CD4/T H 1 paradigm. Ann Anat-Anat Anz 192(4):179–193Google Scholar
  3. 3.
    Lassmann H, van Horssen J (2011) The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett 585(23):3715–3723PubMedGoogle Scholar
  4. 4.
    O’Garra A, Steinman L, Gijbels K (1997) CD4+ T-cell subsets in autoimmunity. Curr Opin Immunol 9(6):872–883PubMedGoogle Scholar
  5. 5.
    Alexander J, Harris M, Wells S, Mills G, Chalamidas K, Ganta V, McGee J, Jennings M, Gonzalez-Toledo E, Minagar A (2010) Alterations in serum MMP-8, MMP-9, IL-12p40 and IL-23 in multiple sclerosis patients treated with interferon-β1b. Mult Scler J 16(7):801–809Google Scholar
  6. 6.
    Leppert D, Ford J, Stabler G, Grygar C, Lienert C, Huber S, Miller KM, Hauser SL, Kappos L (1998) Matrix metalloproteinase-9 (gelatinase B) is selectively elevated in CSF during relapses and stable phases of multiple sclerosis. Brain: J Neurol 121(12):2327–2334Google Scholar
  7. 7.
    Gold R, Lühder F (2008) Interleukin-17—extended features of a key player in multiple sclerosis. Am J Pathol 172(1):8–10PubMedPubMedCentralGoogle Scholar
  8. 8.
    Mirshafiey A, Mohsenzadegan M (2009) TGF-β as a promising option in the treatment of multiple sclerosis. Neuropharmacology 56(6–7):929–936PubMedGoogle Scholar
  9. 9.
    Carrieri P, Provitera V, Perrella M, Tartaglia G, Busto A, Perrella O (1997) Possible role of transforming growth factor-β in relapsing-remitting multiple sclerosis. Neurol Res 19(6):599–600PubMedGoogle Scholar
  10. 10.
    Lin RF, Lin T-s, Tilton R, Cross A (1993) Nitric oxide localized to spinal cords of mice with experimental allergic encephalomyelitis: an electron paramagnetic resonance study. J Exp Med 178(2):643–648PubMedGoogle Scholar
  11. 11.
    Okuda Y, Nakatsuji Y, Fujimura H, Esumi H, Ogura T, Yanagihara T, Sakoda S (1995) Expression of the inducible isoform of nitric oxide synthase in the central nervous system of mice correlates with the severity of actively induced experimental allergic encephalomyelitis. J Neuroimmunol 62(1):103–112PubMedGoogle Scholar
  12. 12.
    Asadi F, Mirzaei MR, Abtahi Froushani SM (2018) Comparison of the effects of 17β-estradiol treated and untreated mesenchymal stem cells on ameliorating animal model of multiple sclerosis. Iran J Basic Med Sci 21(9):936–942PubMedPubMedCentralGoogle Scholar
  13. 13.
    Barnard AL, Chidgey AP, Bernard CC, Boyd RL (2009) Androgen depletion increases the efficacy of bone marrow transplantation in ameliorating experimental autoimmune encephalomyelitis. Blood 113(1):204–213PubMedGoogle Scholar
  14. 14.
    Burt RK, Burns WH, Miller SD (1997) Bone marrow transplantation for multiple sclerosis: returning to Pandora’s box. Immunol Today 18(12):559–561PubMedGoogle Scholar
  15. 15.
    Buzzard KA, Broadley SA, Butzkueven H (2012) What do effective treatments for multiple sclerosis tell us about the molecular mechanisms involved in pathogenesis? Int J Mol Sci 13(10):12665–12709PubMedPubMedCentralGoogle Scholar
  16. 16.
    Soldan SS, Retuerto AIA, Sicotte NL, Voskuhl RR (2003) Immune modulation in multiple sclerosis patients treated with the pregnancy hormone estriol. J Immunol 171(11):6267–6274PubMedGoogle Scholar
  17. 17.
    Wang Q, Yu J-h, Zhai H-h, Zhao Q-t, Chen J-w, Shu L, Li D-q, Liu D-y, Ding Y (2006) Temporal expression of estrogen receptor alpha in rat bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 347(1):117–123PubMedGoogle Scholar
  18. 18.
    Masuda H, Kalka C, Takahashi T, Yoshida M, Wada M, Kobori M, Itoh R, Iwaguro H, Eguchi M, Iwami Y (2007) Estrogen-mediated endothelial progenitor cell biology and kinetics for physiological postnatal vasculogenesis. Circ Res 101(6):598–606PubMedGoogle Scholar
  19. 19.
    Haczynski J, Tarkowski R, Jarzabek K, Slomczynska M, Wolczynski S, Magoffin DA, Jakowicki JA, Jakimiuk AJ (2002) Human cultured skin fibroblasts express estrogen receptor α and β. Int J Mol Med 10(2):149–153PubMedGoogle Scholar
  20. 20.
    Zhou S, Zilberman Y, Wassermann K, Bain SD, Sadovsky Y, Gazit D (2001) Estrogen modulates estrogen receptor α and β expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. J Cell Biochem 81(S36):144–155Google Scholar
  21. 21.
    Holzer G, Einhorn TA, Majeska RJ (2002) Estrogen regulation of growth and alkaline phosphatase expression by cultured human bone marrow stromal cells. J Orthop Res 20(2):281–288PubMedGoogle Scholar
  22. 22.
    Hong L, Colpan A, Peptan IA, Daw J, George A, Evans CA (2007) 17-β estradiol enhances osteogenic and adipogenic differentiation of human adipose-derived stromal cells. Tissue Eng 13(6):1197–1203PubMedGoogle Scholar
  23. 23.
    Sato R, Maesawa C, Fujisawa K, Wada K, Oikawa K, Takikawa Y, Suzuki K, Oikawa H, Ishikawa K, Masuda T (2004) Prevention of critical telomere shortening by oestradiol in human normal hepatic cultured cells and carbon tetrachloride induced rat liver fibrosis. Gut 53(7):1001–1009PubMedPubMedCentralGoogle Scholar
  24. 24.
    Liblau RS, Singer SM, McDevitt HO (1995) Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today 16(1):34–38PubMedGoogle Scholar
  25. 25.
    Ben-Nun A, Wekerle H, Cohen IR (1981) The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol 11(3):195–199PubMedGoogle Scholar
  26. 26.
    Chen GQ, Chen YY, Wang XS, Wu SZ, Yang HM, Xu HQ, He JC, Wang XT, Chen JF, Zheng RY (2010) Chronic caffeine treatment attenuates experimental autoimmune encephalomyelitis induced by guinea pig spinal cord homogenates in Wistar rats. Brain Res 1309:116–125PubMedGoogle Scholar
  27. 27.
    Abtahi Froushani SM, Delirezh N, Hobbenaghi R, Mosayebi G (2014) Synergistic effects of atorvastatin and all-trans retinoic acid in ameliorating animal model of multiple sclerosis. Immunol Invest 43(1):54–68PubMedGoogle Scholar
  28. 28.
    Karimabad MN, Falahati-Pour SK, Hassanshahi G (2016) Significant role (s) of CXCL12 and the SDF-1 3′ a genetic variant in the pathogenesis of multiple sclerosis. NeuroImmunoModulation 23(4):197–208Google Scholar
  29. 29.
    Racke MK, Bonomo A, Scott DE, Cannella B, Levine A, Raine CS, Shevach EM, Röcken M (1994) Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J Exp Med 180(5):1961–1966PubMedGoogle Scholar
  30. 30.
    Chen Y, Kuchroo VK, Inobe J-i, Hafler DA, Weiner HL (1994) Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265(5176):1237–1240PubMedGoogle Scholar
  31. 31.
    Freedman MS, Bar-Or A, Atkins HL, Karussis D, Frassoni F, Lazarus H, Scolding N, Slavin S, Le Blanc K, Uccelli A (2010) The therapeutic potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: consensus report of the International MSCT Study Group. Mult Scler J 16(4):503–510Google Scholar
  32. 32.
    Cha Y, Kwon SJ, Seol W, Park K-S (2008) Estrogen receptor-α mediates the effects of estradiol on telomerase activity in human mesenchymal stem cells. Mol Cells 26(5):454PubMedGoogle Scholar
  33. 33.
    Pereboeva L, Komarova S, Mikheeva G, Krasnykh V, Curiel D (2003) Approaches to utilize mesenchymal progenitor cells as cellular vehicles. Stem Cells (Dayton, Ohio) 21(4):389–404Google Scholar
  34. 34.
    Logeart-Avramoglou D, Anagnostou F, Bizios R, Petite H (2005) Engineering bone: challenges and obstacles. J Cell Mol Med 9(1):72–84PubMedPubMedCentralGoogle Scholar
  35. 35.
    Bobis S, Jarocha D, Majka M (2006) Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol 44(4):215–230PubMedGoogle Scholar
  36. 36.
    Erwin GS, Crisostomo PR, Wang Y, Wang M, Markel TA, Guzman M, Sando IC, Sharma R, Meldrum DR (2009) Estradiol-treated mesenchymal stem cells improve myocardial recovery after ischemia. J Surg Res 152(2):319–324PubMedGoogle Scholar
  37. 37.
    Abtahi Froushani SM, Afzale Ahangaran N (2018) The effect Mesenchymal stem cell treated with 17-β estradiol on the future of the innate immunity responses of rheumatoid arthritis induced with collagen in Wistar rats. Armaghane danesh 23(1):42–56Google Scholar
  38. 38.
    Filková M, Aradi B, Šenolt L, Ospelt C, Vettori S, Mann H, Filer A, Raza K, Buckley CD, Snow M (2014) Association of circulating miR-223 and miR-16 with disease activity in patients with early rheumatoid arthritis. Ann Rheum Dis 73(10):1898–1904PubMedGoogle Scholar
  39. 39.
    Rochefort GY, Delorme B, Lopez A, Hérault O, Bonnet P, Charbord P, Eder V, Domenech J (2006) Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells (Dayton, Ohio) 24(10):2202–2208Google Scholar
  40. 40.
    Kazi AA, Koos RD (2007) Estrogen-induced activation of hypoxia-inducible factor-1α, vascular endothelial growth factor expression, and edema in the uterus are mediated by the phosphatidylinositol 3-kinase/Akt pathway. Endocrinology 148(5):2363–2374PubMedGoogle Scholar
  41. 41.
    Mirzamohammadi S, Aali E, Najafi R, Kamarul T, Mehrabani M, Aminzadeh A, Sharifi AM (2015) Effect of 17beta-estradiol on mediators involved in mesenchymal stromal cell trafficking in cell therapy of diabetes. Cytotherapy 17(1):46–57.  https://doi.org/10.1016/j.jcyt.2014.06.009 CrossRefPubMedGoogle Scholar
  42. 42.
    Simpson E (2003) Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86(3–5):225–230PubMedGoogle Scholar
  43. 43.
    Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843PubMedGoogle Scholar
  44. 44.
    Gordon D, Pavlovska G, Glover CP, Uney JB, Wraith D, Scolding NJ (2008) Human mesenchymal stem cells abrogate experimental allergic encephalomyelitis after intraperitoneal injection, and with sparse CNS infiltration. Neurosci Lett 448(1):71–73PubMedPubMedCentralGoogle Scholar
  45. 45.
    Kemp K, Gordon D, Wraith D, Mallam E, Hartfield E, Uney J, Wilkins A, Scolding N (2011) Fusion between human mesenchymal stem cells and rodent cerebellar Purkinje cells. Neuropathol Appl Neurobiol 37(2):166–178PubMedPubMedCentralGoogle Scholar
  46. 46.
    Torkaman M, Ghollasi M, Mohammadnia-Afrouzi M, Salimi A, Amari A (2017) The effect of transplanted human Wharton’s jelly mesenchymal stem cells treated with IFN-γ on experimental autoimmune encephalomyelitis mice. Cell Immunol 311:1–12PubMedGoogle Scholar
  47. 47.
    Yousefi F, Ebtekar M, Soleimani M, Soudi S, Hashemi SM (2013) Comparison of in vivo immunomodulatory effects of intravenous and intraperitoneal administration of adipose-tissue mesenchymal stem cells in experimental autoimmune encephalomyelitis (EAE). Int Immunopharmacol 17(3):608–616PubMedGoogle Scholar
  48. 48.
    Hong L, Zhang G, Sultana H, Yu Y, Wei Z (2010) The effects of 17-β estradiol on enhancing proliferation of human bone marrow mesenchymal stromal cells in vitro. Stem Cells Dev 20(5):925–931PubMedPubMedCentralGoogle Scholar
  49. 49.
    Simpson E (2003) Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86(3):225–230PubMedGoogle Scholar
  50. 50.
    Fan J-Z, Yang L, Meng G-L, Lin Y-s, Wei B-Y, Fan J, Hu H-M, Liu Y-W, Chen S, Zhang J-K (2014) Estrogen improves the proliferation and differentiation of hBMSCs derived from postmenopausal osteoporosis through notch signaling pathway. Mol Cell Biochem 392(1–2):85–93PubMedPubMedCentralGoogle Scholar
  51. 51.
    Chen F-P, Hu C-H, Wang K-C (2012) Estrogen modulates osteogenic activity and estrogen receptor mRNA in mesenchymal stem cells of women. Climacteric 16(1):154–160PubMedGoogle Scholar
  52. 52.
    Yun SP, Lee MY, Ryu JM, Song CH, Han HJ (2009) Role of HIF-1α and VEGF in human mesenchymal stem cell proliferation by 17β-estradiol: involvement of PKC, PI3K/Akt, and MAPKs. Am J Physiol-Cell Physiol 296(2):C317–C326PubMedGoogle Scholar
  53. 53.
    Ayaloglu-Butun F, Terzioglu-Kara E, Tokcaer-Keskin Z, Akcali KC (2012) The effect of estrogen on bone marrow-derived rat mesenchymal stem cell maintenance: inhibiting apoptosis through the expression of Bcl-xL and Bcl-2. Stem Cell Rev Rep 8(2):393–401PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Rahim Heidari Barchi Nezhad
    • 1
  • Fateme Asadi
    • 2
  • Seyyed Meysam Abtahi Froushani
    • 3
  • Gholamhossein Hassanshahi
    • 1
  • Ayat Kaeidi
    • 4
  • Soudeh Khanamani Falahati-pour
    • 5
  • Zahra Hashemi
    • 6
  • Mohammad Reza Mirzaei
    • 1
    Email author
  1. 1.Molecular Medicine Research Center, Research Institute of Basic Medical SciencesRafsanjan University of Medical SciencesRafsanjanIran
  2. 2.Department of Biochemistry, Faculty of MedicineRafsanjan University of Medical SciencesRafsanjanIran
  3. 3.Department of Microbiology, Faculty of Veterinary MedicineUrmia UniversityUrmiaIran
  4. 4.Physiology-Pharmacology Research CenterRafsanjan University of Medical SciencesRafsanjanIran
  5. 5.Pistachio Safety Research CenterRafsanjan University of Medical SciencesRafsanjanIran
  6. 6.Department of General SubjectsRafsanjan University of Medical SciencesRafsanjanIran

Personalised recommendations