Advertisement

Molecular Biology Reports

, Volume 46, Issue 6, pp 6117–6133 | Cite as

Transposable element discovery and characterization of LTR-retrotransposon evolutionary lineages in the tropical fruit species Passiflora edulis

  • Zirlane Portugal da Costa
  • Luiz Augusto Cauz-Santos
  • Geovani Tolfo Ragagnin
  • Marie-Anne Van Sluys
  • Marcelo Carnier Dornelas
  • Hélène Berges
  • Alessandro de Mello Varani
  • Maria Lucia Carneiro VieiraEmail author
Original Article

Abstract

A significant proportion of plant genomes is consists of transposable elements (TEs), especially LTR retrotransposons (LTR-RTs) which are known to drive genome evolution. However, not much information is available on the structure and evolutionary role of TEs in the Passifloraceae family (Malpighiales order). Against this backdrop, we identified, characterized, and inferred the potential genomic impact of the TE repertoire found in the available genomic resources for Passiflora edulis, a tropical fruit species. A total of 250 different TE sequences were identified (96% Class I, and 4% Class II), corresponding to ~ 19% of the P. edulis draft genome. TEs were found preferentially in intergenic spaces (70.4%), but also overlapping genes (30.6%). LTR-RTs accounted for 181 single elements corresponding to ~ 13% of the draft genome. A phylogenetic inference of the reverse transcriptase domain of the LTR-RT revealed association of 37 elements with the Copia superfamily (Angela, Ale, Tork, and Sire) and 128 with the Gypsy (Del, Athila, Reina, CRM, and Galadriel) superfamily, and Del elements were the most frequent. Interestingly, according to insertion time analysis, the majority (95.9%) of the LTR-RTs were recently inserted into the P. edulis genome (< 2.0 Mya), and with the exception of the Athila lineage, all LTR-RTs are transcriptionally active. Moreover, functional analyses disclosed that the Angela, Del, CRM and Tork lineages are conserved in wild Passiflora species, supporting the idea of a common expansion of Copia and Gypsy superfamilies. Overall, this is the first study describing the P. edulis TE repertoire, and it also lends weight to the suggestion that LTR-RTs had a recent expansion into the analyzed gene-rich region of the P. edulis genome, possibly along WGD (Whole genome duplication) events, but are under negative selection due to their potential deleterious impact on gene regions.

Keywords

Passiflora Passion fruit Genome evolution Mobile genetic elements Reverse transcriptase 

Notes

Acknowledgements

Mr. Steve Simmons for proofreading the manuscript.

Author contributions

Conceptualization, MLCV; Data curation, ZPC and AMV; Formal analysis, ZPC, LACS, GTR and AMV; Funding acquisition, MLCV; Investigation, ZPC; Methodology, ZPC; Resources, MCD; Supervision, MAVS, HB and MLCV; Writing – original draft, ZPC and MLCV; Writing – review & editing, MAVS and AMV.

Funding

This research was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant Number 2014/25215-2, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, scholarship awarded to ZPC) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, scholarships awarded to ZPC and GTR).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11033_2019_5047_MOESM1_ESM.pdf (46 kb)
Electronic supplementary material 1—Schematic representation of domains found in 11 DIRS elements from Passiflora edulis. Domain abbreviations and color-coding: GAG = gag (red); MET = methyltransferase (light blue); PROT = protease (green); RT = reverse transcriptase (blue); RH = ribonuclease H (yellow); INT = integrase (purple). Numbers on the right are element lengths (in bp). (PDF 46 kb)
11033_2019_5047_MOESM2_ESM.pdf (68 kb)
Electronic supplementary material 3—Phylogenetic tree of Copia lineages inferred from the complete amino acid sequence of the GAG domain. Maximum Likelihood analysis was based on the WAG+F model. The bootstrap values for each lineage node are indicated in bold type. Sequences from the Gypsy database are indicated by an asterisk. Names and colored lines indicate lineages. The CRM lineage from the Gypsy superfamily was used as the outgroup to produce a rooted tree. (PDF 68 kb)
11033_2019_5047_MOESM3_ESM.pdf (373 kb)
Electronic supplementary material 4—Phylogenetic tree of Gypsy lineages inferred from the complete amino acid sequence of the GAG domain. Maximum Likelihood analysis was based on the JTT model. The bootstrap values for each lineage node are indicated in bold type. Sequences from the Gypsy database are indicated by an asterisk. Names and colored lines indicate lineages. The Sire lineage from the Copia superfamily was used as the outgroup to produce a rooted tree. (PDF 373 kb)
11033_2019_5047_MOESM4_ESM.pdf (54 kb)
Electronic supplementary material 5—Number of complete and incomplete copies of LTR-RTs in nine lineages of the Copia and Gypsy superfamilies. (PDF 54 kb)
11033_2019_5047_MOESM5_ESM.pdf (12 kb)
Electronic supplementary material 6—Whole genome duplication analysis, based on the distribution of synonymous substitutions per synonymous site for pairwise paralogs (dS), showing at least two WGD events that the P. edulis genome has undergone. (PDF 12 kb)
11033_2019_5047_MOESM6_ESM.fasta (1.8 mb)
Electronic supplementary material 7 (FASTA 1823 kb)
11033_2019_5047_MOESM7_ESM.docx (13 kb)
Electronic supplementary material 8 (DOCX 13 kb)
11033_2019_5047_MOESM8_ESM.xlsx (54 kb)
Electronic supplementary material 9 (XLSX 54 kb)
11033_2019_5047_MOESM9_ESM.docx (14 kb)
Electronic supplementary material 10 (DOCX 14 kb)
11033_2019_5047_MOESM10_ESM.xlsx (23 kb)
Electronic supplementary material 2 (XLSX 23 kb)

References

  1. 1.
    Ravindran S (2012) Barbara McClintock and the discovery of jumping genes. Proc Natl Acad Sci 109:20198–20199.  https://doi.org/10.1073/pnas.1219372109 CrossRefPubMedGoogle Scholar
  2. 2.
    Lisch D (2012) How important are transposons for plant evolution? Nat Rev Genet 14:49–61.  https://doi.org/10.1038/nrg3374 CrossRefGoogle Scholar
  3. 3.
    Wicker T, Sabot FF, Hua-Van AA et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982.  https://doi.org/10.1038/nrg2165 CrossRefPubMedGoogle Scholar
  4. 4.
    Garcia-Perez MM-L, García-Pérez JL (2010) DNA Transposons: nature and applications in genomics. Curr Genom 11:115–128.  https://doi.org/10.2174/138920210790886871 CrossRefGoogle Scholar
  5. 5.
    Schrader L, Schmitz J (2019) The impact of transposable elements in adaptive evolution. Mol Ecol 28:1537–1549.  https://doi.org/10.1111/mec.14794 CrossRefPubMedGoogle Scholar
  6. 6.
    Klein SJ, O’Neill RJ (2018) Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res 26(1–2):5–23.  https://doi.org/10.1007/s10577-017-9569-5 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Vicient CM, Casacuberta JM (2017) Impact of transposable elements on polyploid plant genomes. Ann Bot 120:195–207.  https://doi.org/10.1093/aob/mcx078 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    The Tomato Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641.  https://doi.org/10.1038/nature11119 CrossRefGoogle Scholar
  9. 9.
    Wegrzyn JL, Liechty JD, Stevens KA et al (2014) Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics 196:891–909.  https://doi.org/10.1534/genetics.113.159996 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Park M, Park J, Kim S et al (2012) Evolution of the large genome in Capsicum annuum occurred through accumulation of single-type long terminal repeat retrotransposons and their derivatives. Plant J 69:1018–1029.  https://doi.org/10.1111/j.1365-313X.2011.04851.x CrossRefPubMedGoogle Scholar
  11. 11.
    Hernandez-Pinzon I, de Jesus E, Santiago N, Casacuberta JM (2009) The frequent transcriptional readthrough of the tobacco Tnt1 retrotransposon and its possible implications for the control of resistance genes. J Mol Evol 68:269–278.  https://doi.org/10.1007/s00239-009-9204-y CrossRefPubMedGoogle Scholar
  12. 12.
    Neumann P, Požárková D, Koblížková A, Macas J (2005) PIGY, a new plant envelope-class LTR retrotransposon. Mol Genet Genom 273:43–53.  https://doi.org/10.1007/s00438-004-1092-7 CrossRefGoogle Scholar
  13. 13.
    Novikova A, Smyshlyaev G, Novikova O (2012) Evolutionary history of LTR retrotransposon chromodomains in plants. Int J Plant Genomics 2012:874743.  https://doi.org/10.1155/2012/874743 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Novikova O (2009) Chromodomains and LTR retrotransposons in plants. Commun Integr Biol 2:158–162.  https://doi.org/10.4161/cib.7702 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Llorens C, Futami R, Covelli L et al (2011) The Gypsy database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res 39:D70–D74.  https://doi.org/10.1093/nar/gkq1061 CrossRefPubMedGoogle Scholar
  16. 16.
    Llorens C, Muñoz-Pomer A, Bernad L et al (2009) Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol Direct 4:41.  https://doi.org/10.1186/1745-6150-4-41 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bennetzen JL, Wang H (2014) The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol 65:505–530.  https://doi.org/10.1146/annurev-arplant-050213-035811 CrossRefPubMedGoogle Scholar
  18. 18.
    El Baidouri M, Panaud O (2013) Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution. Genome Biol Evol 5(5):954–965.  https://doi.org/10.1093/gbe/evt025 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ochoa Cruz EA, Cruz GMQ, Vieira AP, Van Sluys M-A (2016) Virus-like attachment sites as structural landmarks of plants retrotransposons. Mob DNA 7:14.  https://doi.org/10.1186/s13100-016-0069-5 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kent TV, Uzunovic J, Wright SI (2017) Coevolution between transposable elements and recombination. Philos Trans R Soc B Biol Sci 372:20160.  https://doi.org/10.1098/rstb.2016.0458 CrossRefGoogle Scholar
  21. 21.
    Galindo-González L, Mhiri C, Deyholos MK, Grandbastien M-A (2017) LTR-retrotransposons in plants: engines of evolution. Gene 626:14–25.  https://doi.org/10.1016/j.gene.2017.04.051 CrossRefPubMedGoogle Scholar
  22. 22.
    Yotoko KSC, Dornelas MC, Togni PD et al (2011) Does variation in genome sizes reflect adaptive or neutral processes? New clues from Passiflora. PLoS ONE 6:e18212.  https://doi.org/10.1371/journal.pone.0018212 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ulmer T, MacDougal JM (2004) Passiflora: passionflowers of the world. Timber Press, Portland, p 430Google Scholar
  24. 24.
    Munhoz CF, Santos AA, Arenhart RA et al (2015) Analysis of plant gene expression during passion fruit-Xanthomonas axonopodis interaction implicates lipoxygenase 2 in host defence. Ann Appl Biol 167:135–155.  https://doi.org/10.1111/aab.12215 CrossRefGoogle Scholar
  25. 25.
    Araya S, Martins AM, Junqueira NTV et al (2017) Microsatellite marker development by partial sequencing of the sour passion fruit genome (Passiflora edulis Sims). BMC Genomics 18:549.  https://doi.org/10.1186/s12864-017-3881-5 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Carneiro MS, Camargo LEA, Coelho ASG et al (2002) RAPD-based genetic linkage maps of yellow passion fruit (Passiflora edulis Sims. f. flavicarpa Deg.). Genome 45:670–678.  https://doi.org/10.1139/g02-035 CrossRefPubMedGoogle Scholar
  27. 27.
    Lopes R, Lopes MTG, Carneiro MS et al (2006) Linkage and mapping of resistance genes to Xanthomonas axonopodis pv. passiflorae in yellow passion fruit. Genome 49:17–29.  https://doi.org/10.1139/G05-081 CrossRefPubMedGoogle Scholar
  28. 28.
    Oliveira EJ, Vieira MLC, Garcia AAF et al (2008) An integrated molecular map of yellow passion fruit based on simultaneous maximum-likelihood estimation of linkage and linkage phases. J Am Soc Hortic Sci 133:35–41CrossRefGoogle Scholar
  29. 29.
    Costa ZP, de Munhoz C, Vieira MLC (2017) Report on the development of putative functional SSR and SNP markers in passion fruits. BMC Res Notes 10:445.  https://doi.org/10.1186/s13104-017-2771-x CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Moraes MC, Geraldi IO, De Pina Matta F et al (2005) Genetic and phenotypic parameter estimates for yield and fruit quality traits from a single wide cross in yellow passion fruit. HortScience 40:1978–1981CrossRefGoogle Scholar
  31. 31.
    Santos A, Penha H, Bellec A et al (2014) Begin at the beginning: a BAC-end view of the passion fruit (Passiflora) genome. BMC Genom 15:816.  https://doi.org/10.1186/1471-2164-15-816 CrossRefGoogle Scholar
  32. 32.
    Munhoz CF, Costa ZP, Cauz-Santos LA et al (2018) A gene-rich fraction analysis of the Passiflora edulis genome reveals highly conserved microsyntenic regions with two related Malpighiales species. Sci Rep 8:13024.  https://doi.org/10.1038/s41598-018-31330-8 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wu Y, Tian Q, Liu J et al (2019) The genomic sequence and comparative genomic analysis of cultivated passion fruit (Passiflora edulis L.). bioRxiv.  https://doi.org/10.1101/522128 CrossRefGoogle Scholar
  34. 34.
    Quesneville H, Bergman CM, Andrieu O et al (2005) Combined evidence annotation of transposable elements in genome sequences. PLoS Comput Biol 1:e22.  https://doi.org/10.1371/journal.pcbi.0010022 CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Flutre T, Duprat E, Feuillet C, Quesneville H (2011) Considering transposable element diversification in de novo annotation approaches. PLoS ONE 6:e16526.  https://doi.org/10.1371/journal.pone.0016526 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Smit A, Hubley R, Green P (2018) RepeatMasker 4.0.8Google Scholar
  37. 37.
    Marchler-Bauer A, Bo Y, Han L et al (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:D200–D203.  https://doi.org/10.1093/nar/gkw1129 CrossRefPubMedGoogle Scholar
  38. 38.
    Liu W, Xie Y, Ma J et al (2015) IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics 31:3359–3361.  https://doi.org/10.1093/bioinformatics/btv362 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277.  https://doi.org/10.1016/S0168-9525(00)02024-2 CrossRefPubMedGoogle Scholar
  40. 40.
    Abeel T, Van Parys T, Saeys Y et al (2012) GenomeView: a next-generation genome browser. Nucleic Acids Res 40:e12.  https://doi.org/10.1093/nar/gkr995 CrossRefPubMedGoogle Scholar
  41. 41.
    Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303:3997
  42. 42.
    Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11:378.  https://doi.org/10.1186/1471-2105-11-378 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Novák P, Neumann P, Pech J et al (2013) RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793.  https://doi.org/10.1093/bioinformatics/btt054 CrossRefPubMedGoogle Scholar
  44. 44.
    Domingues DS, Cruz GMQ, Metcalfe CJ et al (2012) Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns. BMC Genom 13:137.  https://doi.org/10.1186/1471-2164-13-137 CrossRefGoogle Scholar
  45. 45.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  47. 47.
    Keane TM, Creevey CJ, Pentony MM et al (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 6:29.  https://doi.org/10.1186/1471-2148-6-29 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.  https://doi.org/10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Rambaut A (2012) FigTree v. 1.4.0. http://tree.bio.ed.ac.uk/software/figtree/
  50. 50.
    Huson DH, Richter DC, Rausch C et al (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8:460.  https://doi.org/10.1186/1471-2105-8-460 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Stöver BC, Müller KF (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11:7.  https://doi.org/10.1186/1471-2105-11-7 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Sayers EW, Barrett T, Benson DA et al (2011) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 39:D38–D51.  https://doi.org/10.1093/nar/gkq1172 CrossRefPubMedGoogle Scholar
  53. 53.
    Yang Y, Li Y, Chen Q et al (2019) WGDdetector: a pipeline for detecting whole genome duplication events using the genome or transcriptome annotations. BMC Bioinformatics 20:75.  https://doi.org/10.1186/s12859-019-2670-3 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhao D, Ferguson AA, Jiang N (2016) What makes up plant genomes: the vanishing line between transposable elements and genes. Biochim Biophys Acta 1859:366–380.  https://doi.org/10.1016/j.bbagrm.2015.12.005 CrossRefPubMedGoogle Scholar
  55. 55.
    SanMiguel P, Gaut BS, Tikhonov A et al (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45.  https://doi.org/10.1038/1695 CrossRefPubMedGoogle Scholar
  56. 56.
    Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  57. 57.
    Yin H, Du J, Wu J et al (2015) Genome-wide annotation and comparative analysis of long terminal repeat retrotransposons between pear species of P. bretschneideri and P. communis. Sci Rep 5:1–15.  https://doi.org/10.1038/srep17644 CrossRefGoogle Scholar
  58. 58.
    Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498.  https://doi.org/10.1093/oxfordjournals.molbev.a026248 CrossRefPubMedGoogle Scholar
  59. 59.
    Gonzalez LG, Deyholos MK (2012) Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome. BMC Genomics 13:644.  https://doi.org/10.1186/1471-2164-13-644 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Moisy C, Schulman AH, Kalendar R et al (2014) The Tvv1 retrotransposon family is conserved between plant genomes separated by over 100 million years. Theor Appl Genet 127:1223–1235.  https://doi.org/10.1007/s00122-014-2293-z CrossRefPubMedGoogle Scholar
  61. 61.
    Marcon HS, Domingues DS, Silva JC et al (2015) Transcriptionally active LTR retrotransposons in Eucalyptus genus are differentially expressed and insertionally polymorphic. BMC Plant Biol 15:1–16.  https://doi.org/10.1186/s12870-015-0550-1 CrossRefGoogle Scholar
  62. 62.
    Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511.  https://doi.org/10.1038/nbt.1621 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Afgan E, Baker D, van den Beek M et al (2016) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 44:W3–W10.  https://doi.org/10.1093/nar/gkw343 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Spruyt M, Buquicchio F (2004) Gene Runner for Windows. http://www.generunner.net/
  65. 65.
    Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325.  https://doi.org/10.1093/nar/8.19.4321 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Oliver KR, McComb JA, Greene WK (2013) Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol 5:1886–1901.  https://doi.org/10.1093/gbe/evt141 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Narayanan KB, Park HH (2015) Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways. Apoptosis 20:196–209.  https://doi.org/10.1007/s10495-014-1073-1 CrossRefPubMedGoogle Scholar
  68. 68.
    Lee S-I, Kim N-S (2014) Transposable elements and genome size variations in plants. Genomics Inform 12:87.  https://doi.org/10.5808/GI.2014.12.3.87 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Civáň P, Švec M, Hauptvogel P (2011) On the coevolution of transposable elements and plant genomes. J Bot 2011:1–9.  https://doi.org/10.1155/2011/893546 CrossRefGoogle Scholar
  70. 70.
    Hua-van A, Le Rouzic A, Boutin TS et al (2011) The struggle for life of the genome’s selfish architects. Biol Direct 6:19.  https://doi.org/10.1186/1745-6150-6-19 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Tang C, Yang M, Fang Y et al (2016) The rubber tree genome reveals new insights into rubber production and species adaptation. Nat Plants 2:1–10.  https://doi.org/10.1038/NPLANTS.2016.73 CrossRefGoogle Scholar
  72. 72.
    Wang W, Feng B, Xiao J et al (2014) Cassava genome from a wild ancestor to cultivated varieties. Nat Commun 5:5110.  https://doi.org/10.1038/ncomms6110 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Tuskan GA, DiFazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604.  https://doi.org/10.1126/science.1128691 CrossRefPubMedGoogle Scholar
  74. 74.
    Wu P, Zhou C, Cheng S et al (2015) Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant. Plant J 81:810–821.  https://doi.org/10.1111/tpj.12761 CrossRefPubMedGoogle Scholar
  75. 75.
    Chan AP, Crabtree J, Zhao Q et al (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951–956.  https://doi.org/10.1038/nbt.1674 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Pamponét VCC, Souza MM, Silva GS et al (2019) Low coverage sequencing for repetitive DNA analysis in Passiflora edulis Sims: cytogenomic characterization of transposable elements and satellite DNA. BMC Genomics 20(262):1–17.  https://doi.org/10.1186/s12864-019-5576-6 CrossRefGoogle Scholar
  77. 77.
    Jiang S-Y, Ramachandran S (2013) Genome-wide survey and comparative analysis of LTR retrotransposons and their captured genes in rice and sorghum. PLoS ONE 8:e71118–e71118.  https://doi.org/10.1371/journal.pone.0071118 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Gupta S, Gallavotti A, Stryker GA et al (2005) A novel class of Helitron-related transposable elements in maize contain portions of multiple pseudogenes. Plant Mol Biol 57:115–127.  https://doi.org/10.1007/s11103-004-6636-z CrossRefPubMedGoogle Scholar
  79. 79.
    Morgante M, Brunner S, Pea G et al (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002.  https://doi.org/10.1038/ng1615 CrossRefPubMedGoogle Scholar
  80. 80.
    Dooner HK, Weil CF (2007) Give-and-take : interactions between DNA transposons and their host plant genomes. 486–492.  https://doi.org/10.1016/j.gde.2007.08.010 CrossRefGoogle Scholar
  81. 81.
    Thomas J, Pritham EJ (2015) Helitrons, the eukaryotic rolling-circle transposable elements. Mob DNA III.  https://doi.org/10.1128/microbiolspec.mdna3-0049-2014 CrossRefGoogle Scholar
  82. 82.
    Fan C, Zhang Y, Yu Y et al (2008) The subtelomere of Oryza sativa chromosome 3 short arm as a hot bed of new gene origination in rice. Mol Plant 1:839–850.  https://doi.org/10.1093/mp/ssn050 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Gaut BS, Hollister JD (2007) Population and evolutionary dynamics of Helitron transposable elements in Arabidopsis thaliana. Mol Biol Evol 24:2515–2524.  https://doi.org/10.1093/molbev/msm197 CrossRefPubMedGoogle Scholar
  84. 84.
    Du C, Fefelova N, Caronna J et al (2009) The polychromatic Helitron landscape of the maize genome. Proc Natl Acad Sci 106:19916–19921.  https://doi.org/10.1073/pnas.0904742106 CrossRefPubMedGoogle Scholar
  85. 85.
    Barbaglia AM, Klusman KM, Higgins J et al (2012) Gene capture by Helitron transposons reshuffles the transcriptome of maize. Genetics 190:965–975.  https://doi.org/10.1534/genetics.111.136176 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Zhao M, Ma J (2013) Co-evolution of plant LTR-retrotransposons and their host genomes. Protein Cell 4:493–501.  https://doi.org/10.1007/s13238-013-3037-6 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Cruz GMQ, Metcalfe CJ, De Setta N et al (2014) Virus-like attachment sites and plastic CpG Islands: landmarks of diversity in plant Del retrotransposons. PLoS ONE 9:1–14.  https://doi.org/10.1371/journal.pone.0097099 CrossRefGoogle Scholar
  88. 88.
    Piskurek O, Jackson DJ (2012) Transposable elements: from DNA parasites to architects of metazoan evolution. Genes (Basel) 3:409–422.  https://doi.org/10.3390/genes3030409 CrossRefGoogle Scholar
  89. 89.
    Jiang N, Jordan IK, Wessler SR (2002) Dasheng and RIRE2: a nonautonomous long terminal repeat element and its putative autonomous partner in the rice genome. Plant Physiol 130:1697–1705.  https://doi.org/10.1104/pp.015412 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Contreras B, Vives C, Castells R, Casacuberta J (2015) The impact of transposable elements in the evolution of plant genomes. In: Pontarotti P (ed) Evol Biol biodiversification from genotype to phenotype. Springer, Cham, pp 93–105CrossRefGoogle Scholar
  91. 91.
    Uzunovic J, Josephs EB, Stinchcombe JR, Wright SI (2019) Transposable elements are important contributors to standing variation in gene expression in Capsella grandiflora. Mol Biol Evol 36(8):1734–1745.  https://doi.org/10.1093/molbev/msz098 CrossRefPubMedGoogle Scholar
  92. 92.
    Cossu RM, Buti M, Giordani T et al (2012) A computational study of the dynamics of LTR retrotransposons in the Populus trichocarpa genome. Tree Genet Genomes 8:61–75.  https://doi.org/10.1007/s11295-011-0421-3 CrossRefGoogle Scholar
  93. 93.
    Stitzer MC, Anderson SN, Springer NM, Ross-Ibarra J (2019) The genomic ecosystem of transposable elements in maize. bioRxiv.  https://doi.org/10.1101/559922 CrossRefGoogle Scholar
  94. 94.
    Lynch M (2007) The origins of genome architecture, 1st edn. Sinauer Associates, SunderlandGoogle Scholar
  95. 95.
    Bourque G, Burns KH, Gehring M et al (2018) Ten things you should know about transposable elements. Genome Biol 19:199.  https://doi.org/10.1186/s13059-018-1577-z CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Parisod C, Senerchia N (2012) Responses of transposable elements to polyploidy. In: Parisod C, Senerchia N (eds) Plant transposable elements. Springer, Berlin, pp 147–168CrossRefGoogle Scholar
  97. 97.
    Wendel JF, Jackson SA, Meyers BC, Wing RA (2016) Evolution of plant genome architecture. Genome Biol 17:37.  https://doi.org/10.1186/s13059-016-0908-1 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Ågren JA, Huang HR, Wright SI (2016) Transposable element evolution in the allotetraploid Capsella bursa-pastoris. Am J Bot 103:1197–1202.  https://doi.org/10.3732/ajb.1600103 CrossRefPubMedGoogle Scholar
  99. 99.
    Sader MA, Dias Y, Costa ZP, Munhoz C, Penha H, Bergés H, Vieira MLC, Pedrosa-Harand A (2019) Identification of passion fruit (Passiflora edulis) chromosomes using BAC-FISH. Chromosom Res.  https://doi.org/10.1007/s10577-019-09614-0 CrossRefGoogle Scholar
  100. 100.
    de Setta N, Monteiro-Vitorello CB, Metcalfe CJ et al (2014) Building the sugarcane genome for biotechnology and identifying evolutionary trends. BMC Genomics 15:540.  https://doi.org/10.1186/1471-2164-15-540 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    de Araujo PG, Rossi M, de Jesus EM et al (2005) Transcriptionally active transposable elements in recent hybrid sugarcane. Plant J 44:707–717.  https://doi.org/10.1111/j.1365-313X.2005.02579.x CrossRefPubMedGoogle Scholar
  102. 102.
    Beulé T, Agbessi MDT, Dussert S et al (2015) Genome-wide analysis of LTR-retrotransposons in oil palm. BMC Genomics 16:1–14.  https://doi.org/10.1186/s12864-015-2023-1 CrossRefGoogle Scholar
  103. 103.
    Muschner VC, Lorenz AP, Cervi AC et al (2003) A first molecular phylogenetic analysis of Passiflora (Passifloraceae). Am J Bot 90:1229–1238.  https://doi.org/10.3732/ajb.90.8.1229 CrossRefPubMedGoogle Scholar
  104. 104.
    Muschner VC, Zamberlan PM, Bonatto SL, Freitas LB (2012) Phylogeny, biogeography and divergence times in Passiflora (Passifloraceae). Genet Mol Biol 35:1036–1043.  https://doi.org/10.1590/S1415-47572012000600019 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Zirlane Portugal da Costa
    • 1
  • Luiz Augusto Cauz-Santos
    • 1
  • Geovani Tolfo Ragagnin
    • 2
  • Marie-Anne Van Sluys
    • 2
  • Marcelo Carnier Dornelas
    • 3
  • Hélène Berges
    • 4
  • Alessandro de Mello Varani
    • 5
  • Maria Lucia Carneiro Vieira
    • 1
    Email author
  1. 1.Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São PauloPiracicabaBrazil
  2. 2.Departamento de Botânica, Instituto de Biociências, Universidade de São PauloSão PauloBrazil
  3. 3.Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de CampinasCampinasBrazil
  4. 4.Institut National de la Recherche Agronomique (INRA), Centre National de Ressources Génomique VégétalesCastanet-TolosanFrance
  5. 5.Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual PaulistaJaboticabalBrazil

Personalised recommendations