Advertisement

Molecular cloning and oxidative-stress responses of a novel manganese superoxide dismutase (MnSOD) gene in the dinoflagellate Prorocentrum minimum

  • Hui Wang
  • Hansol Kim
  • Weol-Ae Lim
  • Jang-Seu KiEmail author
Original Article

Abstract

Dinoflagellate algae are microeukaryotes that have distinct genomes and gene regulation systems, making them an interesting model for studying protist evolution and genomics. In the present study, we discovered a novel manganese superoxide dismutase (PmMnSOD) gene from the marine dinoflagellate Prorocentrum minimum, examined its molecular characteristics, and evaluated its transcriptional responses to the oxidative stress-inducing contaminants, CuSO4 and NaOCl. Its cDNA was 1238 bp and contained a dinoflagellate spliced leader sequence, a 906 bp open reading frame (301 amino acids), and a poly (A) tail. The gene was coded on the nuclear genome with one 174 bp intron; signal peptide analysis showed that it might be localized to the mitochondria. Real-time PCR analysis revealed an increase in gene expression of MnSOD and SOD activity when P. minimum cells were separately exposed to CuSO4 and NaOCl. In addition, both contaminants considerably decreased chlorophyll autofluorescence, and increased intracellular reactive oxygen species. These results suggest that dinoflagellate MnSOD may be involved in protecting cells against oxidative damage.

Keywords

Prorocentrum minimum MnSOD ROS Genomic DNA Gene expression 

Notes

Acknowledgements

We thank Dr. S. Abbasi for critical comments on the early version of manuscript. This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (2016R1D1A1A09920198), and by a grant from the National Institute of Fisheries Science (R2019037) funded to J.-S. Ki.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies conducted on human or animal subjects.

Supplementary material

11033_2019_5029_MOESM1_ESM.xlsx (14 kb)
Supplementary material 1 (XLSX 13 kb)

References

  1. 1.
    Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (2004) Dinoflagellates: a remarkable evolutionary experiment. Am J Bot 91(10):1523–1534.  https://doi.org/10.3732/ajb.91.10.1523 CrossRefGoogle Scholar
  2. 2.
    Taylor FJR, Hoppenrath M, Saldarriaga JF (2008) Dinoflagellate diversity and distribution. Biodivers Conserv 17(2):407–418.  https://doi.org/10.1007/s10531-007-9258-3 CrossRefGoogle Scholar
  3. 3.
    Lin S, Zhang H, Zhuang Y, Tran B, Gill J (2010) Spliced leader–based metatranscriptomic analyses lead to recognition of hidden genomic features in dinoflagellates. Proc Natl Acad Sci USA 107(46):20033–20038.  https://doi.org/10.1073/pnas.1007246107 CrossRefGoogle Scholar
  4. 4.
    Brunelle SA, Van Dolah FM (2011) Post-transcriptional regulation of s-phase genes in the dinoflagellate, Karenia brevis. J Eukaryot Microbiol 58:373–382.  https://doi.org/10.1111/j.1550-7408.2011.00560.x CrossRefGoogle Scholar
  5. 5.
    Lin S (2011) Genomic understanding of dinoflagellates. Res Microbiol 162(6):551–569.  https://doi.org/10.1016/j.resmic.2011.04.006 CrossRefGoogle Scholar
  6. 6.
    Shoguchi E et al (2013) Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol 23(15):1399–1408.  https://doi.org/10.1016/j.cub.2013.05.062 CrossRefGoogle Scholar
  7. 7.
    Ponmani P, Guo R, Ki J-S (2016) Analysis of the genomic DNA of the harmful dinoflagellate Prorocentrum minimum: a brief survey focused on the non-coding RNA gene sequences. J Appl Phycol 28(1):335–344.  https://doi.org/10.1007/s10811-015-0570-0 CrossRefGoogle Scholar
  8. 8.
    Ebenezer V, Lim WA, Ki J-S (2014) Effects of the algicides CuSO4 and NaOCl on various physiological parameters in the harmful dinoflagellate Cochlodinium polykrikoides. J Appl Phycol 26:2357–2365.  https://doi.org/10.1007/s10811-014-0267-9 CrossRefGoogle Scholar
  9. 9.
    Ebenezer V, Suh Y-S, Ki J-S (2015) Effects of biocide chlorine on biochemical responses of the dinoflagellate Prorocentrum minimum. Water Environ Res 87:1949–1954.  https://doi.org/10.2175/106143015X14362865226635 CrossRefGoogle Scholar
  10. 10.
    Guo R, Ki J-S (2012) Differential transcription of heat shock protein 90 (HSP90) in the dinoflagellate Prorocentrum minimum by copper and endocrine-disrupting chemicals. Ecotoxicology 21(2):1448–1457.  https://doi.org/10.1007/s10646-012-0898-z CrossRefGoogle Scholar
  11. 11.
    Guo R, Ebenezer V, Ki J-S (2014) PmMGST3, a novel microsomal glutathione S-transferase gene in the dinoflagellate Prorocentrum minimum, is a potential biomarker of oxidative stress. Gene 546(2):378–385.  https://doi.org/10.1016/j.gene.2014.05.046 CrossRefGoogle Scholar
  12. 12.
    Guo R, Youn SH, Ki J-S (2015) Heat shock protein 70 and 90 genes in the harmful dinoflagellate Cochlodinium polykrikoides: genomic structures and transcriptional responses to environmental stresses. Int J Genomics 2015:484626.  https://doi.org/10.1155/2015/484626 Google Scholar
  13. 13.
    Guo R, Ki J-S (2013) Characterization of a novel catalase–peroxidase (KatG) gene from the dinoflagellate Prorocentrum minimum. J Phycol 49(5):1011–1016.  https://doi.org/10.1111/jpy.12094 Google Scholar
  14. 14.
    Xu J, Duan XG, Yang J, Beeching JR, Zhang P (2013) Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiol 161(3):1517–1528.  https://doi.org/10.1104/pp.112.212803 CrossRefGoogle Scholar
  15. 15.
    Wuerges J, Lee JW, Yim YI, Yim HS, Kang SO, Djinovic Carugo K (2004) Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proc Natl Acad Sci USA 101(23):8569–8574.  https://doi.org/10.1073/pnas.0308514101 CrossRefGoogle Scholar
  16. 16.
    Dufernez F, Derelle E, Noël C, Sanciu G, Mantini C, Dive D, Soyer-Gobillard MO, Capron M, Pierce RJ, Wintjens R, Guillebault D, Viscogliosi E (2008) Molecular characterization of iron-containing superoxide dismutases in the heterotrophic dinoflagellate Crypthecodinium cohnii. Protist 159(2):223–238.  https://doi.org/10.1016/j.protis.2007.11.005 CrossRefGoogle Scholar
  17. 17.
    Kim HJ, Kato N, Kim S, Triplett B (2008) Cu/Zn superoxide dismutases in developing cotton fibers: evidence for an extracellular form. Planta 228(2):281–292.  https://doi.org/10.1007/s00425-008-0734-0 CrossRefGoogle Scholar
  18. 18.
    Crawford A, Fassett RG, Geraghty DP, Kunde DA, Ball MJ, Robertson IK, Coombes JS (2012) Relationships between single nucleotide polymorphisms of antioxidant enzymes and disease. Gene 501:89–103.  https://doi.org/10.1016/j.gene.2012.04.011 CrossRefGoogle Scholar
  19. 19.
    Miriyala S, Spasojevic I, Tovmasyan A, Salvemini D, Vujaskovic Z, St Clair D (1822) Batinic-Haberle I (2012) Manganese superoxide dismutase, MnSOD and its mimics. Biochim Biophys Acta 5:794–814.  https://doi.org/10.1016/j.bbadis.2011.12.002 Google Scholar
  20. 20.
    Zhang S, Li XR, Xu H, Cao Y, Ma SH, Cao Y, Qiao D (2014) Molecular cloning and functional characterization of MnSOD from Dunaliella salina. J Basic Microbiol 54(5):438–447.  https://doi.org/10.1002/jobm.201200483 CrossRefGoogle Scholar
  21. 21.
    Zelko IN, Manriani YJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33(3):337–349.  https://doi.org/10.1016/S0891-5849(02)00905-X CrossRefGoogle Scholar
  22. 22.
    Wang J, Sommerfeld M, Hu Q (2011) Cloning and expression of isoenzymes of superoxide dismutase in Haematococcus pluvialis (Chlorophyceae) under oxidative stress. J Appl Phycol 23(6):995–1003.  https://doi.org/10.1007/s10811-010-9631-6 CrossRefGoogle Scholar
  23. 23.
    Que Y, Liu J, Xu L, Guo J, Chen R (2012) Molecular cloning and expression analysis of an Mn superoxide dismutase gene in sugarcane. Afr J Biotechnol 11:552–560Google Scholar
  24. 24.
    Okamoto OK, Robertson DL, Fagan TF, Hastings JW, Colepicolo P (2001) Different regulatory mechanisms modulate the expression of a dinoflagellate iron superoxide dismutase. J Biol Chem 276(23):19989–19993.  https://doi.org/10.1074/jbc.M101169200 CrossRefGoogle Scholar
  25. 25.
    Wang H, Abassi S, Ki J-S (2019) Origin and roles of a novel copper-zinc superoxide dismutase gene from the harmful dinoflagellate Prorocentrum minimum. Gene 683:113–122.  https://doi.org/10.1016/j.gene.2018.10.013 CrossRefGoogle Scholar
  26. 26.
    Miller-Morey JS, Van Dolah FM (2004) Differential responses of stress proteins, antioxidant enzymes, and photosynthetic efficiency to physiological stresses in the Florida red tide dinoflagellate, Karenia brevis. Comp Biochem Physiol C 138(4):493–505.  https://doi.org/10.1016/j.cca.2004.08.009 CrossRefGoogle Scholar
  27. 27.
    Krueger T, Fisher PL, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Davy SK (2015) Transcriptomic characterization of the enzymatic antioxidants FeSOD, MnSOD, APX and KatG in the dinoflagellate genus Symbiodinium. BMC Evol Biol 15:48.  https://doi.org/10.1186/s12862-015-0326-0 CrossRefGoogle Scholar
  28. 28.
    Guo R, Wang H, Suh YS, Ki J-S (2016) Transcriptomic profiles reveal the genome-wide responses of the harmful dinoflagellate Cochlodinium polykrikoides when exposed to the algicide copper sulfate. BMC Genomics 17:29.  https://doi.org/10.1186/s12864-015-2341-3 CrossRefGoogle Scholar
  29. 29.
    Zhang H, Campbell DA, Sturm NR, Lin S (2009) Dinoflagellate spliced leader RNA genes display a variety of sequences and genomic arrangements. Mol Biol Evol 26:1757–1771.  https://doi.org/10.1093/molbev/msp083 CrossRefGoogle Scholar
  30. 30.
    Wang H, Guo R, Ki J-S (2018) 6.0 K microarray reveals differential transcriptomic responses in the dinoflagellate Prorocentrum minimum exposed to polychlorinated biphenyl (PCB). Chemosphere 195:398–409.  https://doi.org/10.1016/j.chemosphere.2017.12.066 CrossRefGoogle Scholar
  31. 31.
    Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4325CrossRefGoogle Scholar
  32. 32.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  33. 33.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729CrossRefGoogle Scholar
  34. 34.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791CrossRefGoogle Scholar
  35. 35.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45.  https://doi.org/10.1093/nar/29.9.e45 CrossRefGoogle Scholar
  36. 36.
    Qin Y, Lu M, Gong X (2008) Dihydrorhodamine 123 is superior to 2,7-dichlorodihydrofluorescein diacetate and dihydrorhodamine 6G in detecting intracellular hydrogen peroxide in tumor cells. Cell Biol Int 32(2):224–228.  https://doi.org/10.1016/j.cellbi.2007.08.028 CrossRefGoogle Scholar
  37. 37.
    Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287.  https://doi.org/10.1016/0003-2697(71)90370-8 CrossRefGoogle Scholar
  38. 38.
    Kanematsu S, Okayasu M, Kurogi D (2012) Occurrence of two types of Mn-superoxide dismutase in the green alga Spirogyra: cDNA cloning and characterization of genomic genes and recombinant proteins. Bull Minamikyushu Univ 42A:1–13Google Scholar
  39. 39.
    Hansen KG, Herrmann JM (2019) Transport of proteins into mitochondria. Protein J 143:81–136Google Scholar
  40. 40.
    Gao XL, Li JM, Xu HX, Yan GH, Jiu M, Liu SS, Wang XW (2015) Cloning of a putative extracellular Cu/Zn superoxide dismutase and functional differences of superoxide dismutases in invasive and indigenous whiteflies. Insect Sci 22(1):52–64.  https://doi.org/10.1111/1744-7917.12100 CrossRefGoogle Scholar
  41. 41.
    Okamoto OK, Liu L, Robertsonn DL, Hastings JW (2001) Members of the dinoflagellate luciferase gene family differ in synonymous substitution rates. Biochemistry 40(51):15862–15868.  https://doi.org/10.1021/bi011651q CrossRefGoogle Scholar
  42. 42.
    Bachvaroff TR, Place AR (2008) From stop to start: tandem gene arrangement, copy number and trans-splicing sites in the dinoflagellate Amphidinium carterae. PLoS ONE 3:e2929.  https://doi.org/10.1371/journal.pone.0002929 CrossRefGoogle Scholar
  43. 43.
    Wan XS, Devalaraja MN, St Clair DK (1994) Molecular structure and organization of the human manganese superoxide dismutase gene. DNA Cell Biol 13(11):1127–1136.  https://doi.org/10.1089/dna.1994.13.1127 CrossRefGoogle Scholar
  44. 44.
    Beauchemin M, Roy S, Daoust P, Dagenais-Bellefeuille S, Bertomeu T, Letourneau L, Lang BF, Morse D (2012) Dinoflagellate tandem array gene transcripts are highly conserved and not polycistronic. Proc Natl Acad Sci USA 109:15793–15798.  https://doi.org/10.1073/pnas.1206683109 CrossRefGoogle Scholar
  45. 45.
    Mendez GS, Delwiche CF, Apt KE, Lippmeier JC (2015) Dinoflagellate gene structure and intron splice sites in a genomic tandem array. J Eukaryot Microbiol 62(5):679–687.  https://doi.org/10.1111/jeu.12230 CrossRefGoogle Scholar
  46. 46.
    Aranda M, Li Y, Liew YJ, Baumgarten S, Simakov O, Wilson MC, Piel J, Ashoor H, Bougouffa S, Bajic VB, Ryu T, Ravasi T, Bayer T, Micklem G, Kim H, Bhak J, LaJeunesse TC, Voolstra CR (2016) Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci Rep 6:39734.  https://doi.org/10.1038/srep39734 CrossRefGoogle Scholar
  47. 47.
    Luis P, Behnke K, Toepel J, Wilhelm C (2006) Parallel analysis of transcript levels and physiological key parameters allows the identification of stress phase gene markers in Chlamydomonas reinhardtii under copper excess. Plant, Cell Environ 29(11):2043–2054.  https://doi.org/10.1111/j.1365-3040.2006.01579.x CrossRefGoogle Scholar
  48. 48.
    Qian H, Yu S, Sun Z, Xie X, Liu W, Fu Z (2010) Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa. Aquat Toxicol 99(3):405–412.  https://doi.org/10.1016/j.aquatox.2010.05.018 CrossRefGoogle Scholar
  49. 49.
    Buapet P, Mohammadi NS, Pernice M, Kumar M, Kuzhiumparambil U, Ralph PJ (2019) Excess copper promotes photoinhibition and modulates the expression of antioxidant-related genes in Zostera muelleri. Aquat Toxicol 207:91–100.  https://doi.org/10.1016/j.aquatox.2018.12.005 CrossRefGoogle Scholar
  50. 50.
    Vitro R, Mañas P, Alvarez I, Condon S, Raso J (2005) Membrane damage and microbial inactivation by chlorine in the absence and presence of chlorine-demanding substrate. Appl Environ Microbiol 71(9):5022–5028.  https://doi.org/10.1128/AEM.71.9.5022-5028.2005 CrossRefGoogle Scholar
  51. 51.
    Stanley NR, Pattison DI, Hawkins CL (2010) Ability of hypochlorous acid and N-chloramines to chlorinate DNA and its constituents. Chem Res Toxicol 23:1293–1302.  https://doi.org/10.1021/tx100188b CrossRefGoogle Scholar
  52. 52.
    Guo R, Ebenezer V, Wang H, Ki J-S (2017) Chlorine affects photosystem II and modulates the transcriptional levels of photosynthesis-related genes in the dinoflagellate Prorocentrum minimum. J Appl Phycol 29(1):153–163.  https://doi.org/10.1007/s10811-016-0955-8 CrossRefGoogle Scholar
  53. 53.
    Abassi S, Wang H, Park BS, Park JW, Ki J-S (2017) A novel cyclophilin B gene in the red tide dinoflagellate Cochlodinium polykrikoides: molecular characterizations and transcriptional responses to environmental stresses. Biomed Res Int 2017:4101580.  https://doi.org/10.1155/2017/4101580 CrossRefGoogle Scholar
  54. 54.
    Wang H, Park BS, Lim WA, Ki J-S (2018) CpMCA, a novel metacaspase gene from the harmful dinoflagellate Cochlodinium polykrikoides and its expression during cell death. Gene 651:70–78.  https://doi.org/10.1016/j.gene.2018.02.002 CrossRefGoogle Scholar
  55. 55.
    Schreiber U, Hormann H, Neubauer C, Klughammer C (1995) Assessment of photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis. J Plant Physiol 22:209–220.  https://doi.org/10.1071/PP9950209 Google Scholar
  56. 56.
    Wang H, Ebenezer V, Ki J-S (2018) Photosynthetic and biochemical responses of the freshwater green algae Closterium ehrenbergii Meneghini (Conjugatophyceae) exposed to the metal coppers and its implication for toxicity testing. J Microbiol 56(6):426–434.  https://doi.org/10.1007/s12275-018-8081-8 CrossRefGoogle Scholar
  57. 57.
    Sathasivam R, Ebenezer V, Guo R, Ki J-S (2016) Physiological and biochemical responses of the freshwater green algae Closterium ehrenbergii to the common disinfectant chlorine. Ecotoxicol Environ Saf 133:501–508.  https://doi.org/10.1016/j.ecoenv.2016.08.004 CrossRefGoogle Scholar
  58. 58.
    Li M, Hu C, Zhu Q, Chen L, Kong Z, Liu Z (2006) Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere 62(4):565–572.  https://doi.org/10.1016/j.chemosphere.2005.06.029 CrossRefGoogle Scholar
  59. 59.
    Kebeish R, El-Ayouty Y, Husain A (2014) Effect of copper on growth, bioactive metabolites, antioxidant enzymes and photosynthesis-related gene transcription in Chlorella vulgaris. World J Biol Biol Sci 2(2):34–43Google Scholar
  60. 60.
    Ebenezer V, Ki J-S (2014) Biocide sodium hypochlorite decreases pigment production and induces oxidative damage in the harmful dinoflagellate Cochlodinium polykrikoides. Algae 29(4):311–319.  https://doi.org/10.4490/algae.2014.29.4.311 CrossRefGoogle Scholar
  61. 61.
    Sheshadri P, Kumar A (2016) Managing odds in stem cells: insights into the role of mitochondrial antioxidant enzyme MnSOD. Free Radic Res 50(5):570–584.  https://doi.org/10.3109/10715762.2016.1155708 CrossRefGoogle Scholar
  62. 62.
    White JA, Todd J, Newman T, Focks N, Girke T, de Ilárduya OM, Jaworski JG, Ohlrogge JB, Benning C (2000) A new set of Arabidopsis expressed sequence tags from developing seeds. The metabolic pathway from carbohydrates to seed oil. Plant Physiol 4:1582–1594.  https://doi.org/10.1104/pp.124.4.1582 CrossRefGoogle Scholar
  63. 63.
    Morey JS, Monroe EA, Kinney AL, Beal M, Johnson JG, Hitchcock GL, Van Dolah FM (2011) Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition. BMC Genomics 12:346.  https://doi.org/10.1186/1471-2164-12-346 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of BiotechnologySangmyung UniversitySeoulSouth Korea
  2. 2.Ocean Climate and Ecology Research DivisionNational Institute of Fisheries Science (NIFS)BusanSouth Korea

Personalised recommendations