Advertisement

Isolation and characterisation of 14 novel microsatellite markers through Next Generation Sequencing for the commercial Atlantic seabob shrimp Xiphopenaeus kroyeri

  • Thomas R. H. KerkhoveEmail author
  • Bart Hellemans
  • Marleen De Troch
  • Annelies De Backer
  • Filip A. M. Volckaert
Short Communication
  • 29 Downloads

Abstract

Assessing population genetic structure is a crucial step to support fisheries and conservation management. DNA microsatellite molecular markers are a widely used tool in population genotyping. In the present study, we characterised and developed 14 novel polymorphic microsatellite markers for a decapod crustacean, the Atlantic seabob shrimp Xiphopenaeus kroyeri (Heller, 1862), through rapid and cost-effective Illumina shotgun sequencing and a Galaxy-based bioinformatic pipeline. We genotyped 60 individuals from 2 populations with the newly developed microsatellites, resulting in the detection of 3 to 29 alleles per locus. Four loci deviated from Hardy–Weinberg equilibrium. Cross-amplification in a cryptic congeneric species was successful for eight loci (57%). The microsatellite loci developed in this study will be highly relevant for genetic and evolutionary studies of X. kroyeri, and for the stock management of this commercially exploited species.

Keywords

Population structure Shotgun sequencing DNA microsatellites Decapoda Sustainable fisheries Western Atlantic 

Notes

Acknowledgements

We would like to thank Noble House Seafoods Limited, the Fisheries Department of the Ministry of Agriculture of Guyana, T. Willems of the Fisheries Department of the Ministry of Agriculture, Animal Husbandry and Fisheries of Suriname, S. Hall of Heiploeg Suriname and L. Baulier, M. Tagliarolo and F. Blanchard of Ifremer Guyane for supporting and assisting in the sample collection. We are grateful to J. Boyen for his assistance in the molecular analyses. We thank two anonymous reviewers for their helpful comments on a previous draft of the manuscript. This study was carried out with infrastructure funded by the European Marine Biological Resource Centre (EMBRC) Belgium – Research Foundation – Flanders (FWO) project (GOH3817N) and with an operational grant from the Flemish Interuniversity Council – Interuniversity Development Cooperation (VLIR-UOS) Global Minds Fund (GMF-OPR-32) from Ghent University awarded to T. Kerkhove and M. De Troch. The first author acknowledges a PhD scholarship from VLIR-UOS (VLADOC 2015-2019).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving animal and human participants

Not applicable.

References

  1. 1.
    Bryan-Brown DN, Brown CJ, Hughes JM, Connolly RM (2017) Patterns and trends in marine population connectivity research. Mar Ecol Prog Ser 585:243–256.  https://doi.org/10.3354/meps12418 CrossRefGoogle Scholar
  2. 2.
    Selkoe KA, D’Aloia CC, Crandall ED et al (2016) A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar Ecol Prog Ser 554:1–19.  https://doi.org/10.3354/meps11792 CrossRefGoogle Scholar
  3. 3.
    Garcia-Cisneros A, Palacin C, Ventura CRR, Feital B, Paiva PC, Perez-Portela R (2018) Intraspecific genetic structure, divergence and high rates of clonality in an amphi-Atlantic starfish. Mol Ecol 27(3):752–772.  https://doi.org/10.1111/mec.14454 CrossRefGoogle Scholar
  4. 4.
    Munguia-Vega A, Marinone SG, Paz-Garcia DA et al (2018) Anisotropic larval connectivity and metapopulation structure driven by directional oceanic currents in a marine fish targeted by small-scale fisheries. Mar Biol 165(1):16.  https://doi.org/10.1007/s00227-017-3267-x CrossRefGoogle Scholar
  5. 5.
    Holthuis LB (1980) Shrimps and prawns of the world. An annotated catalogue of species of interest to fisheries. FAO Fisheries Synopsis (125). FAO, RomeGoogle Scholar
  6. 6.
    FAO (2018) Yearbook 2016. Fishery and aquaculture statistics—capture production. FAO, RomeGoogle Scholar
  7. 7.
    Kerkhove TRH, Boyen J, De Backer A et al (2019) Multilocus data reveal cryptic species in the Atlantic seabob shrimp Xiphopenaeus kroyeri (Crustacea: Decapoda). Biol J Linn Soc 127(4):847–862.  https://doi.org/10.1093/biolinnean/blz065 CrossRefGoogle Scholar
  8. 8.
    Gusmao J, Piergiorge RM, Tavares C (2013) The contribution of genetics in the study of the sea-bob shrimp populations from the Brazilian coast. Bol Inst Pesca 39(3):323–338CrossRefGoogle Scholar
  9. 9.
    Da Silva SLR, Santos RD, Costa RC, Hirose GL (2019) Growth and population structure of the seabob shrimp Xiphopenaeus kroyeri (Decapoda: Penaeidae) on the continental shelf of Sergipe. Braz J Mar Biol Assoc UK 99(1):81–92.  https://doi.org/10.1017/s0025315417002041 CrossRefGoogle Scholar
  10. 10.
    Guichoux E, Lagache L, Wagner S et al (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11(4):591–611.  https://doi.org/10.1111/j.1755-0998.2011.03014.x CrossRefGoogle Scholar
  11. 11.
    Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissues. Phytochem Bull 19:11–15Google Scholar
  12. 12.
    Griffiths SM, Fox G, Briggs PJ et al (2016) A Galaxy-based bioinformatics pipeline for optimised, streamlined microsatellite development from Illumina next-generation sequencing data. Conserv Genet Resour 8(4):481–486.  https://doi.org/10.1007/s12686-016-0570-7 CrossRefGoogle Scholar
  13. 13.
    R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, AustriaGoogle Scholar
  14. 14.
    Adamack AT, Gruber B (2014) PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol Evol 5(4):384–387.  https://doi.org/10.1111/2041-210x.12158 CrossRefGoogle Scholar
  15. 15.
    Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403–1405.  https://doi.org/10.1093/bioinformatics/btn129 CrossRefGoogle Scholar
  16. 16.
    Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26(3):419–420.  https://doi.org/10.1093/bioinformatics/btp696 CrossRefGoogle Scholar
  17. 17.
    Rousset F (2008) GENEPOP ‘007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8(1):103–106.  https://doi.org/10.1111/j.1471-8286.2007.01931.x CrossRefGoogle Scholar
  18. 18.
    Yuan J, Zhang X, Liu C et al (2018) Genomic resources and comparative analyses of two economical penaeid shrimp species, Marsupenaeus japonicus and Penaeus monodon. Mar Genomics 39:22–25.  https://doi.org/10.1016/j.margen.2017.12.006 CrossRefGoogle Scholar
  19. 19.
    Zhang XJ, Yuan JB, Sun YM et al (2019) Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nat Commun 10:356.  https://doi.org/10.1038/s41467-018-08197-4 CrossRefGoogle Scholar
  20. 20.
    Kashi Y, King DG (2006) Simple sequence repeats as advantageous mutators in evolution. Trends Genet 22(5):253–259.  https://doi.org/10.1016/j.tig.2006.03.005 CrossRefGoogle Scholar
  21. 21.
    de Francisco AK, Pinheiro AP, Silva TB, Galetti PM (2009) Isolation and characterization of microsatellites in three overexploited penaeid shrimp species along the Brazilian coastline. Conserv Genet 10(3):563–566.  https://doi.org/10.1007/s10592-008-9570-9 CrossRefGoogle Scholar
  22. 22.
    Piergiorge RM (2013) Caracterização Molecular e Demografia Histórica de Populações do Camarão Sete-Barbas—Xiphopenaeus kroyeri—(Heller 1862) do Sudoeste do Atlântico Por Meio de Polimorfismos de Microssatélites e do Gene COI. Instituto Oswaldo Cruz, Rio de JaneiroGoogle Scholar
  23. 23.
    Vartia S, Collins PC, Cross TF et al (2014) Multiplexing with three-primer PCR for rapid and economical microsatellite validation. Hereditas 151(2–3):43–54.  https://doi.org/10.1111/hrd2.00044 CrossRefGoogle Scholar
  24. 24.
    FAO (2018) The State of World Fisheries and Aquaculture 2018—meeting the sustainable development goals. FAO, RomeGoogle Scholar
  25. 25.
    Knutsen H, Jorde PE, Gonzalez EB et al (2015) Does population genetic structure support present management regulations of the northern shrimp (Pandalus borealis) in Skagerrak and the North Sea? ICES J Mar Sci 72(3):863–871.  https://doi.org/10.1093/icesjms/fsu204 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Marine Biology Research Group, Department of BiologyGhent UniversityGhentBelgium
  2. 2.Laboratory of Biodiversity and Evolutionary GenomicsKU LeuvenLeuvenBelgium
  3. 3.Animal Sciences, Aquatic Environment and Quality Research AreaFlanders Research Institute for Agriculture, Fisheries and Food (ILVO)OstendBelgium

Personalised recommendations