Skip to main content

Advertisement

Log in

Selection signatures of litter size in Dazu black goats based on a whole genome sequencing mixed pools strategy

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Litter size is considered to be the most important index for estimating domestic animal productivity. Due to its complexity, the molecular mechanism of litter size has not been elucidated, and it has restricted the use of marker-assisted selection to create high-yield populations in goats. A genome-wide selective sweep analysis was performed with 31 Dazu black goats to identify significant genomic regions and candidate genes related to litter size by a mixed pools strategy. A total of 96 candidate genes were identified, including NR6A1, STK3, IGF2BP2, AR, HMGA2, NPTX1, ANKRD17, DPYD, CLRB, PPP3CA, PLCB1, STK3 and HMGA2, using mixed pool analysis with ZHp and FST. We classified these candidate genes based on the functional classification and annotation of signaling pathways. According to the GO and KEGG analysis results, a total of 43 GO terms and 108 pathways were annotated from these genes. In particular, some novel candidate genes were enriched in reproduction-related pathways, such as the estrogen signaling pathway and oocyte meiosis. These findings provide insight into the influences of coding genes on the fecundity traits of goats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

Data analysis results for each stage are available from the corresponding author on reasonable request. The raw sequencing data generated has been uploaded to the NCBI (SRA: SRP152397).

References

  1. Karimi K, Sargolzaei M, Plastow GS, Wang Z, Miar Y (2018) Genetic and phenotypic parameters for litter size, survival rate, gestation length and litter weight traits in American mink. J Anim Sci 96(7):2596–2606. https://doi.org/10.1093/jas/sky178

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liu C, Ran X, Niu X, Li S, Wang J, Zhang Q (2018) Insertion of 275-bp SINE into first intron of PDIA4 gene is associated with litter size in Xiang pigs. Anim Reprod Sci S0378–4320(17):31049. https://doi.org/10.1016/j.anireprosci.2018.04.079

    Article  CAS  Google Scholar 

  3. Bemji MN, Isa AM, Ibeagha-Awemu EM, Wheto M (2018) Polymorphisms of caprine GnRHR gene and their association with litter size in West African dwarf goats. Mol Biol Rep 45(1):63–69. https://doi.org/10.1007/s11033-017-4141-0

    Article  CAS  PubMed  Google Scholar 

  4. Cui Y, Yan H, Wang K, Xu H, Zhang X, Zhu H, Liu J, Qu L, Lan X, Pan C (2018) Insertion/deletion within the KDM6A gene is significantly associated with litter size in goat. Front Genet 9:91. https://doi.org/10.3389/fgene.2018.00091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. El-Seedy AS, Hashem NM, El-Azrak KM, Nour El-Din A, Ramadan TA, Taha TA, Salem MH (2017) Genetic screening of FecB, FecXG and FecXI mutations and their linkage with litter size in Barki and Rahmani sheep breeds. Reprod Domest Anim 52(6):1133–1137. https://doi.org/10.1111/rda.13002

    Article  CAS  PubMed  Google Scholar 

  6. Nagdy H, Mahmoud KGM, Kandiel MMM, Helmy NA, Ibrahim SS, Nawito MF, Othman OE (2018) PCR-RFLP of bone morphogenetic protein 15 (BMP15/FecX) gene as a candidate for prolificacy in sheep. Int J Vet Sci Med 6(Suppl):68–72. https://doi.org/10.1016/j.ijvsm.2018.01.001

    Article  Google Scholar 

  7. French LR, Rutledge JJ, First NL (1979) Effect of age and parity on litter size in pigs. J Reprod Fertil 57(1):59–60

    Article  CAS  PubMed  Google Scholar 

  8. Lopez BIM, Song C, Seo K (2018) Genetic parameters and trends for production traits and their relationship with litter traits in Landrace and Yorkshire pigs. Anim Sci J 89(10):1381–1388. https://doi.org/10.1111/asj.13090

    Article  PubMed  Google Scholar 

  9. Gunia M, Phocas F, Arquet R, Alexandre G, Mandonnet N (2011) Genetic parameters for body weight, reproduction, and parasite resistance traits in the Creole goat. J Anim Sci 89(11):3443–3451. https://doi.org/10.2527/jas.2011-3872

    Article  CAS  PubMed  Google Scholar 

  10. Mohammadi H, Moradi Shahrebabak M, Moradi Shahrebabak H (2012) Genetic parameter estimates for growth traits and prolificacy in Raeini Cashmere goats. Trop Anim Health Prod 44(6):1213–1220. https://doi.org/10.1007/s11250-011-0059-z

    Article  PubMed  Google Scholar 

  11. Lai FN, Zhai HL, Cheng M, Ma JY, Cheng SF, Ge W, Zhang GL, Wang JJ, Zhang RQ, Wang X, Min LJ, Song JZ, Shen W (2016) Whole-genome scanning for the litter size trait associated genes and SNPs under selection in dairy goat (Capra hircus). Sci Rep 6:38096. https://doi.org/10.1038/srep38096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang RQ, Lai FN, Wang JJ, Zhai HL, Zhao Y, Sun YJ, Min LJ, Shen W (2018) Analysis of the SNP loci around transcription start sites related to goat fecundity trait base on whole genome resequencing. Gene 643:1–6. https://doi.org/10.1016/j.gene.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  13. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual (M), 3rd edn. Clod Spring Harbor Laboratory Press, New York

    Google Scholar 

  14. Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132(2):583–589

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Podzus J, Kowalczyk-Quintas C, Schuepbach-Mallepell S, Willen L, Staehlin G, Vigolo M, Tardivel A, Headon D, Kirby N, Mikkola ML, Schneider H, Schneider P (2017) Ectodysplasin A in biological fluids and diagnosis of ectodermal dysplasia. J Dent Res 96(2):217–224. https://doi.org/10.1177/0022034516673562

    Article  CAS  PubMed  Google Scholar 

  16. Carneiro M, Hu D, Archer J, Feng C, Afonso S, Chen C, Blanco-Aguiar JA, Garreau H, Boucher S, Ferreira PG, Ferrand N, Rubin CJ, Andersson L (2017) Dwarfism and altered craniofacial development in rabbits is caused by a 12.1 kb deletion at the HMGA2 locus. Genetics 205(2):955–965. https://doi.org/10.1534/genetics.116.196667

    Article  CAS  PubMed  Google Scholar 

  17. Chung J, Zhang X, Collins B, Sper RB, Gleason K, Simpson S, Koh S, Sommer J, Flowers WL, Petters RM, Piedrahita JA (2018) High mobility group A2 (HMGA2) deficiency in pigs leads to dwarfism, abnormal fetal resource allocation, and cryptorchidism. Proc Natl Acad Sci USA 115(21):5420–5425. https://doi.org/10.1073/pnas.1721630115

    Article  CAS  PubMed  Google Scholar 

  18. Yu S, Xia M, Alsiddig MA, Liu H, Wei W, Chen J (2017) Molecular cloning, alternative splicing and mRNA expression analysis of MAGI1 and its correlation with laying performance in geese. Br Poult Sci 58(2):158–165. https://doi.org/10.1080/00071668.2016.1268251

    Article  CAS  PubMed  Google Scholar 

  19. Lyu Z, Qin N, Tyasi TL, Zhu H, Liu D, Yuan S, Xu R (2016) The Hippo/MST pathway member SAV1 plays a suppressive role in development of the prehierarchical follicles in hen ovary. PLoS ONE 11(8):e0160896. https://doi.org/10.1371/journal.pone.0160896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiang C, Li J, Hu L, Huang J, Luo T, Zhong Z, Zheng Y, Zheng L (2015) Hippo signaling pathway reveals a spatio-temporal correlation with the size of primordial follicle pool in mice. Cell Physiol Biochem 35(3):957–968. https://doi.org/10.1159/000369752

    Article  CAS  PubMed  Google Scholar 

  21. Zhao H, Li Z, Cooney AJ, Lan ZJ (2007) Orphan nuclear receptor function in the ovary. Front Biosci 1(12):3398–3405

    Article  Google Scholar 

  22. Wang Q, Cooney AJ (2013) Revisiting the role of GCNF in embryonic development. Semin Cell Dev Biol 24(10–12):679–686. https://doi.org/10.1016/j.semcdb.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  23. He B, Mi Y, Zhang C (2013) Gonadotropins regulate ovarian germ cell mitosis/meiosis decision in the embryonic chicken. Mol Cell Endocrinol 370(1–2):32–41. https://doi.org/10.1016/j.mce.2013.02.010

    Article  CAS  PubMed  Google Scholar 

  24. Młodawska W, Grzesiak M, Kochan J, Nowak A (2018) Intrafollicular level of steroid hormones and the expression of androgen receptor in the equine ovary at puberty. Theriogenology 121:13–20. https://doi.org/10.1016/j.theriogenology.2018.07.026

    Article  CAS  PubMed  Google Scholar 

  25. de Santi F, Beltrame FL, Hinton BT, Cerri PS, Sasso-Cerri E (2018) Reduced levels of stromal sex hormone-binding globulin and androgen receptor dysfunction in the sperm storage region of the rat epididymis. Reproduction 155(6):467–479. https://doi.org/10.1530/rep-18-0014

    Article  CAS  PubMed  Google Scholar 

  26. O’Hara L, Smith LB (2015) Androgen receptor roles in spermatogenesis and infertility. Best Pract Res Clin Endocrinol Metab 29(4):595–605. https://doi.org/10.1016/j.beem.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  27. Butovskaya ML, Lazebny OE, Vasilyev VA, Dronova DA, Karelin DV, Mabulla AZ, Shibalev DV, Shackelford TK (2015) Androgen receptor gene polymorphism, aggression, and reproduction in tanzanian foragers and pastoralists. PLoS ONE 10(8):e0136208. https://doi.org/10.1371/journal.pone.0136208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kirkham CL, Aguilar OA, Yu T, Tanaka M, Mesci A, Chu KL, Fine JH, Mossman KL, Bremner R, Allan DSJ, Carlyle JR (2017) Interferon-dependent induction of Clr-b during mouse cytomegalovirus infection protects bystander cells from natural killer cells via NKR-P1B-mediated inhibition. J Innate Immun 9(4):343–358. https://doi.org/10.1159/000454926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Voigt S, Mesci A, Ettinger J, Fine JH, Chen P, Chou W, Carlyle JR (2007) Cytomegalovirus evasion of innate immunity by subversion of the NKR-P1B:Clr-b missing-self axis. Immunity 26(5):617–627

    Article  CAS  PubMed  Google Scholar 

  30. Lin YJ, Chang JS, Liu X, Tsang H, Chien WK, Chen JH, Hsieh HY, Hsueh KC, Shiao YT, Li JP, Lin CW, Lai CH, Wu JY, Chen CH, Lin JG, Lin TH, Liao CC, Huang SM, Lan YC, Ho TJ, Liang WM, Yeh YC, Lin JC, Tsai FJ (2015) Genetic variants in PLCB4/PLCB1 as susceptibility loci for coronary artery aneurysm formation in Kawasaki disease in Han Chinese in Taiwan. Sci Rep 5:14762. https://doi.org/10.1038/srep14762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramazzotti G, Bavelloni A, Blalock W, Piazzi M, Cocco L, Faenza I (2016) BMP-2 induced expression of PLCβ1 that is a positive regulator of osteoblast differentiation. J Cell Physiol. 231(3):623–629. https://doi.org/10.1002/jcp.25107

    Article  CAS  PubMed  Google Scholar 

  32. Meng Q, Wang K, Liu X, Zhou H, Xu L, Wang Z, Fang M (2017) Identification of growth trait related genes in a Yorkshire purebred pig population by genome-wide association studies. Asian-Australas J Anim Sci 30(4):462–469. https://doi.org/10.5713/ajas.16.0548

    Article  CAS  PubMed  Google Scholar 

  33. Celik O, Celik N, Gungor S, Haberal ET, Aydin S (2015) Selective regulation of oocyte meiotic events enhances progress in fertility preservation methods. Biochem Insights. 8:11–21. https://doi.org/10.4137/BCI.S28596

    Article  PubMed  PubMed Central  Google Scholar 

  34. Limonta P, Marelli MM, Moretti R, Marzagalli M, Fontana F, Maggi R (2018) GnRH in the human female reproductive axis. Vitam Horm 107:27–66. https://doi.org/10.1016/bs.vh.2018.01.003

    Article  PubMed  Google Scholar 

  35. Mehdinejadiani S, Amidi F, Mehdizadeh M, Barati M, Pazhohan A, Alyasin A, Mehdinejadiani K, Sobhani A (2019) Effects of letrozole and clomiphene citrate on Wnt signaling pathway in endometrium of polycystic ovarian syndrome and healthy women. Biol Reprod 100(3):641–648

    Article  PubMed  Google Scholar 

  36. Tu X, Liu M, Tang J, Zhang Y, Shi Y, Yu L, Sun Z (2018) The ovarian estrogen synthesis function was impaired in Y123F mouse and partly restored by exogenous FSH supplement. Reprod Biol Endocrinol. 16(1):44. https://doi.org/10.1186/s12958-018-0365-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen C, Jiang X, Li Y, Yu H, Li S, Zhang Z, Xu H, Yang Y, Liu G, Zhu F, Ren X, Zou L, Xu B, Liu J, Spencer PS, Yang X (2019) Low-dose oral copper treatment changes the hippocampal phosphoproteomic profile and perturbs mitochondrial function in a mouse model of Alzheimer’s disease. Free Radic Biol Med. 135:144–156. https://doi.org/10.1016/j.freeradbiomed.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  38. Myers CT, Stong N, Mountier EI, Helbig KL, Freytag S, Sullivan JE, Ben Zeev B, Nissenkorn A, Tzadok M, Heimer G, Shinde DN, Rezazadeh A, Regan BM, Oliver KL, Ernst ME, Lippa NC, Mulhern MS, Ren Z, Poduri A, Andrade DM, Bird LM, Bahlo M, Berkovic SF, Lowenstein DH, Scheffer IE, Sadleir LG, Goldstein DB, Mefford HC, Heinzen EL (2017) De Novo mutations in PPP3CA cause severe neurodevelopmental disease with seizures. Am J Hum Genet 101(4):516–524. https://doi.org/10.1016/j.ajhg.2017.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Song Y, Wang K, Chen DB, Magness RR, Zheng J (2009) Suppression of protein phosphatase 2 differentially modulates VEGF- and FGF2-induced signaling in ovine fetoplacental artery endothelial cells. Placenta 30(10):907–913. https://doi.org/10.1016/j.placenta.2009.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang K, Song Y, Chen DB, Zheng J (2008) Protein phosphatase 3 differentially modulates vascular endothelial growth factor- and fibroblast growth factor 2-stimulated cell proliferation and signaling in ovine fetoplacental artery endothelial cells. Biol Reprod 79(4):704–710. https://doi.org/10.1095/biolreprod.108.068957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Redgrove KA, Bernstein IR, Pye VJ, Mihalas BP, Sutherland JM, Nixon B, McCluskey A, Robinson PJ, Holt JE, McLaughlin EA (2016) Dynamin 2 is essential for mammalian spermatogenesis. Sci Rep. 6:35084. https://doi.org/10.1038/srep35084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ruan P, Huang MJ, Guo XL, Xu NY (2018) Genetic variation of XX is related to litter size in pigs. Chin J Anim Sci 54(7):35–40

    Google Scholar 

Download references

Acknowledgements

Fundamental Research Funds for the Central Universities (XDJK2018B014), and National Natural Science Foundation of China (No. 31172195), Characteristic Germplasm Resources Population Selection and Innovation on Mutton Sheeps and Goats (No. 2015BAD03B05) support for experimental animal costs. Chongqing Research Program of Basic Research and Frontier Technology (cstc2018jcyjAX0153) support for the costs of genomic sequencing. We are grateful to/thank Guangzhou Genedenovo Biotechnology Co., Ltd for assisting in sequencing and part of bioinformatics analysis.

Author information

Authors and Affiliations

Authors

Contributions

GXE, and YFH conceived and designed the experiments. GXE, and YJZ performed the lab work, analyzed the data and wrote the paper.

Corresponding author

Correspondence to Yong-Fu Huang.

Ethics declarations

Conflict of interests

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

E, GX., Zhao, YJ. & Huang, YF. Selection signatures of litter size in Dazu black goats based on a whole genome sequencing mixed pools strategy. Mol Biol Rep 46, 5517–5523 (2019). https://doi.org/10.1007/s11033-019-04904-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04904-6

Keywords

Navigation