Vector-free in vivo trans-determination of adult hepatic stem cells to insulin-producing cells

  • Shuvasree Sarkar
  • Chayan Munshi
  • Sarmishtha Chatterjee
  • Sandip Mukherjee
  • Shelley BhattacharyaEmail author
Short Communication


A reduction in the number of functional β-cells is the central pathological event in diabetes. Liver and ventral pancreas differentiates simultaneously in the same general domain of cells within embryonic endoderm. In addition, the precursor cell population being bi-potential may be targeted for either pancreas or liver development. Hepatic stem cells were redirected in vivo to functional insulin producing cells in a acetylaminofluorene–partial hepatectomy (AAF/PH) adult male rat model with/without GLP-1 treatment. In routine H&E histology and immunohistochemistry, stem cells resembled β cells in GLP-1 injected rats. Immunoblots revealed involvement of adenylate cyclase, TLR4 and PDX1 in insulin synthesis. Expression of genes (GLP-1R, MAFA, PDX1, INS1 and INS2) augmented in the GLP-1 treated regenerated liver. Results strongly indicated the key role of GLP-1 in the induction of insulin secretion in trans-determined reprogrammed cell in vivo. The present method being vector free poses no risk of vector spillover in the host and holds promise.


Stem cell β-Like cell GLP-1 Vector free trans-determination 



Authors gratefully acknowledge National Academy of Sciences, India for providing research grant in the NASI Honorary Scientist Scheme.

Authors contribution

All authors contributed equally in experimental design and manuscript preparation. SS contributed in hepatectomy, Western blotting and gene expression; CM contributed in histology and immunohistochemistry; SM contributed in FACS analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Moore-Scott BA, Opoka R, Lin SC, Kordich JJ, Wells JM (2007) Identification of molecular markers that are expressed in discrete anterior-posterior domains of the endoderm from the gastrula stage to mid-gestation. Dev Dyn 236:1997–2003CrossRefGoogle Scholar
  2. 2.
    Deutsch G, Jung J, Zheng M, Lóra J, Zaret KS (2001) A bipotential precursor for pancreas and liver within the embryonic endoderm. Development 128:871–881Google Scholar
  3. 3.
    Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455:627–632CrossRefGoogle Scholar
  4. 4.
    Shapiro AMJ, Lakey JRT, Ryan EA, Korbutt GS, Toth E, Warnock GL, Rajotte RV (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Eng J Med 343(4):230–238CrossRefGoogle Scholar
  5. 5.
    Zhu S, Russ HA, Wang X, Zhang M, Ma T, Xu T, Ding S (2016) Human pancreatic beta-like cells converted from fibroblasts. Nat Commun 7:1–13Google Scholar
  6. 6.
    Lu YC, Sternini C, Rozengurt E, Zhukova E (2005) Release of transgenic human insulin from gastric G cells: a novel approach for the amelioration of diabetes. Endocrinology 146(6):2610–2619CrossRefGoogle Scholar
  7. 7.
    Beikmohammadi L, Bandehpour M, Hashemi SM, Kazemi B (2019) Generation of insulin-producing hepatocyte-like cells from human Wharton’s jelly mesenchymal stem cells as an alternative source of islet cells. J Cell Physiol. Google Scholar
  8. 8.
    Liu J, Liu Y, Wang H, Hao H, Han Q, Shen J, Shi J, Li C, Han W (2013) Direct differentiation of hepatic stem-like WB cells into insulin-producing cells using small molecules. Sci Rep 3:1–8Google Scholar
  9. 9.
    Manohar R, Lagasse E (2009) Transdetermination: a new trend in cellular reprogramming. Mol Ther 17:936–938CrossRefGoogle Scholar
  10. 10.
    Kaneto H, Miyatsuoka T, Fujitani Y (2007) Role of PDX1 and MafA as a potential therapeutic target for diabetes. Diabetes Res Clin Pract 77:S127–S137CrossRefGoogle Scholar
  11. 11.
    Ber I, Shternhall K, Perl S, Ohanuna Z, Goldberg I, Barshack I, Benvenisti-Zarum L, Meivar-Levy I, Ferber S (2003) Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem 278:31950–31957CrossRefGoogle Scholar
  12. 12.
    Yang L, Li S, Hatch H, Ahrens K, Cornelius JG, Peterson BE, Peck AB (2002) In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci USA 99:8078–8083CrossRefGoogle Scholar
  13. 13.
    Wang X, Cahill CM, Pineyro MA, Zhou J, Doyle ME, Egan JM (1999) Glucagon-like peptide-1 regulates the beta cell transcription factor, PDX1, in insulinoma cells. Endocrinology 140:4904–4907CrossRefGoogle Scholar
  14. 14.
    Bisgaard HC, Nagy P, Santoni-Rugiu E, Thorgeirsson SS (2003) Proliferation, apoptosis, and induction of hepatic transcription factors are characteristics of the early response of biliary epithelial (oval) cells to chemical carcinogens. Hepatology 23:62–70CrossRefGoogle Scholar
  15. 15.
    Paku S, Schnur J, Nagy P, Thorgeirsson SS (2001) Origin and structural evolution of the early proliferating oval cells in rat liver. Am J Pathol 158:1313–1323CrossRefGoogle Scholar
  16. 16.
    Fausto N (2004) Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology 39:1477–1487CrossRefGoogle Scholar
  17. 17.
    Atala A, Lanza RP (2001) Preface. In: Atala A, Lanza RP (eds) Methods of tissue engineering. Academic Press, San Diego, pp 83–96Google Scholar
  18. 18.
    Oh SH, Hatch HM, Petersen BE (2002) Hepatic oval “stem” cell in liver regeneration. Semin Cell Dev Biol 13:405–409CrossRefGoogle Scholar
  19. 19.
    Snykers S, Kock JD, Rogiers V, Vanhaecke T (2009) In Vitro differentiation of embryonic and adult stem cells into hepatocytes: state of the art. Stem Cells 27:577–605CrossRefGoogle Scholar
  20. 20.
    Nakajima-Nagata N, Sakurai T, Mitaka T, Katakai T, Yamato E, Miyazaki J, Tabata Y, Sugai M, Shimizu A (2004) In vitro induction of adult hepatic progenitor cells into insulin-producing cells. Biochem Biophys Res Commun 318:625–630CrossRefGoogle Scholar
  21. 21.
    Yechoor V, Liu V, Espiritu C, Paul A, Oka K, Kojima H, Chan L (2009) Neurogenin3 is sufficient for in vivo transdetermination of hepatic progenitor cells into islet-like cells but not transdifferentiation of hepatocytes. Dev Cell 16(3):358–373CrossRefGoogle Scholar
  22. 22.
    Shimano K, Satake M, Okaya A, Kitanaka J, Kitanaka N, Takemura M (2003) Hepatic oval cell have the side population phenotype defined by expression of atp binding cassette transporter ABCG2/BCRP1. Am J Pathol 163:3–9CrossRefGoogle Scholar
  23. 23.
    Agarwal S, Roy S, Ray A, Mazumder S, Bhattacharya S (2009) Arsenic trioxide and lead acetate induce apoptosis in adult rat hepatic stem cells. Cell Biol Toxicol 25:403–413CrossRefGoogle Scholar
  24. 24.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Measurement of protein with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  25. 25.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔct method. Methods 25:402–408CrossRefGoogle Scholar
  26. 26.
    Pagulica FW, Melton DA (2013) How to make a functional β-cell. Development 140:2472–2483CrossRefGoogle Scholar
  27. 27.
    Kanherkar RR, Bhatia-Dey N, Makarev E, Csoka AB (2014) Cellular reprogramming for understanding and treating human disease. Front Cell Dev Biol 2:1–21Google Scholar
  28. 28.
    Balogh P, Engelmann P (2011) Transdifferentiation and regenerative medicine. University of Pécs, Pécs, pp 1–88Google Scholar
  29. 29.
    Beresford WA (1990) Direct transdifferentiation: can cells change their phenotype without dividing? Cell Differ Dev 29:81–93CrossRefGoogle Scholar
  30. 30.
    Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87:1409–1439CrossRefGoogle Scholar
  31. 31.
    Drucker DJ (2003) Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol 17:161–171CrossRefGoogle Scholar
  32. 32.
    Zhou J, Wang X, Pineyro MA, Egan JM (1999) Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42 J cells into glucagon- and insulin-producing cells. Diabetes 48:2358–2366CrossRefGoogle Scholar
  33. 33.
    Fava E, Dehghany J, Ouwendijk J, Müller A, Niederlein A, Verkade P, Meyer-Hermann M, Solimena M (2012) Novel standards in the measurement of rat insulin granules combining electron microscopy, high-content image analysis and in silico modeling. Diabetologia 55:1013–1023CrossRefGoogle Scholar
  34. 34.
    Artner I, Hang Y, Mazur M, Yamamoto T, Guo M, Linder J, Magnuson MA, Stein R (2010) MafA and MafB regulate genes critical to beta-cells in a unique temporal manner. Diabetes 59:2530–2539CrossRefGoogle Scholar
  35. 35.
    Aguayo-Mazzucato C, Koh A, Khattabi IE, Li WC, Toschi E, Jermendy A, Juhl K, Mao K, Weir GC, Sharma A et al (2011) Mafa expression enhances glucose-responsive insulin secretion in neonatal rat beta cells. Diabetologia 54:583–593CrossRefGoogle Scholar
  36. 36.
    Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, Barshack I, Seijffers R, Kopolovic J, Kaiser N et al (2000) Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 6:568–572CrossRefGoogle Scholar
  37. 37.
    Zhao L, Guo M, Matsuoka T, Hagman DK, Parazzoli SD, Poitout V, Stein R (2005) The islet β-cell enriched MafA activator is a key regulator of insulin gene transcription. J Biol Chem 280:11887–11894CrossRefGoogle Scholar
  38. 38.
    Portha B, Tourrel-Cuzin C, Movassat J (2011) Activation of the GLP-1 receptor signalling pathway: a relevant strategy to repair a deficient Beta-cell mass. Exp Diabetes Res 376509:11Google Scholar
  39. 39.
    Gu C, Stein GH, Pan N, Goebbels S, Hörnberg H, Nave KA, Herrera P, White P, Kaestner KH, Sussel L et al (2010) Pancreatic β cells require NeuroD to achieve and maintain functional maturity. Cell Metab 11:298–310CrossRefGoogle Scholar
  40. 40.
    Wan Y, Garner J, Wu N, Philip L, Han Y, McDaniel K, Annable T, Zhou T, Francis H, Glaser S et al (2016) Role of Stem cells during diabetic liver injury. J Cell Mol Med 20:195–203CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Environmental Toxicology Laboratory, Department of Zoology, Centre for Advanced StudiesVisva-Bharati UniversitySantiniketanIndia
  2. 2.School of Environment and Life SciencesUniversity of SalfordSalfordUK
  3. 3.KolkataIndia
  4. 4.Molecular Endocrinology Laboratory, Department of Zoology, Centre for Advanced StudiesVisva-Bharati UniversitySantiniketanIndia

Personalised recommendations