Advertisement

Validation of suitable reference genes for quantitative gene expression analysis in Tripterygium wilfordii

  • Jing Zhang
  • Chuan-shu Zhu
  • Yan-bo Huo
  • Bin Zhang
  • Zhi-qing Ma
  • Jun-tao FengEmail author
  • Xing Zhang
Original Article
  • 56 Downloads

Abstract

Validation of suitable reference genes is critical in quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Suitable and reliable reference genes for the normalization of gene expression data are characterized by high gene expression stability across tissues and different experimental conditions. This study evaluated the gene expression stability of ten reference genes commonly used in Arabidopsis thaliana for their suitability in qRT-PCR analysis in Tripterygium wilfordii Hook.f. The orthologous sequences of these ten candidate genes were identified from T. wilfordii transcriptomic data (Project No. SRX472292). Five algorithms including GeNorm, NormFinder, BestKeeper, ΔCt, and RefFinder were used to assess the gene expression stability of these putative reference genes in different plant tissues and different stress conditions. The results identified ACTINT7 and TBP as the most suitable reference genes across all samples. The gene expressions of TwHMGR (3-hydroxy-3-methylglutaryl coenzyme A reductase, KU246037.1) and of TwDXR (1-deoxy-D-xylulose-5-phosphate reductoisomerase, KJ174341.1) were investigated to validate the suitability of the reference genes. The validation analysis confirmed the suitability of ACTINT7 and TBP as the best reference genes for elucidating secondary metabolite biosynthesis pathway in T. wilfordii. In summary, this study identified the most suitable and reliable reference genes for future qRT-PCR- based studies in T. wilfordii.

Keywords

Tripterygium wilfordii qRT-PCR Reference gene Gene expression 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31272110) and the Natural Science Foundation of Shaanxi Province (Grant No. 2016JM3036).

Author contributions

CZ and JZ conceived and designed the study. JZ, YH and BZ performed the experiments. CZ and JZ wrote the paper. CZ, JF, ZM and XZ reviewed and edited the manuscript. All authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

References

  1. 1.
    Tao X, Lipsky PE (2000) The Chinese Aanti-inflammatory and immunosuppressive herbal remedy Tripterygium wilfordii Hook.f. Reuh Dis Clin N Am 26:29–50.  https://doi.org/10.1016/s0889-857X(05)0118-6 CrossRefGoogle Scholar
  2. 2.
    Setty AR, Sigal LH (2005) Herbal medications commonly used in the practice of rheumatology: mechanisms of action, efficacy, and side effects. Semin Arthr Rheum 34:773–784.  https://doi.org/10.1016/j.semarthrit.2005.01.011 CrossRefGoogle Scholar
  3. 3.
    Brinker AM, Ma J, Lipsky PE, Raskin I (2007) Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochemistry 68:732–766.  https://doi.org/10.1016/j.phytochem.2006.11.029 CrossRefGoogle Scholar
  4. 4.
    Lange BM, Fischedick JT, Lange MF, Srividya N, Šamec D, Poirier BC (2017) Integrative approaches for the identification and localization of specialized metabolites in Tripterygium roots. Plant Physiol 173:456–469CrossRefGoogle Scholar
  5. 5.
    Chen X, Murakami T, Oppenheim JJ, Howard OM (2005) Triptolide, a constituent of immunosuppressive Chinese herbal medicine, is a potent suppressor of dendritic-cell maturation and trafficking. Blood 106:2409–2416.  https://doi.org/10.1182/blood-2005-03-0854 CrossRefGoogle Scholar
  6. 6.
    Krakauer T, Chen X, Howard OMZ, Young HA (2005) Triptolide attenuates endotoxin- and staphylococcal exotoxin-induced T-cell proliferation and production of cytokines and chemokines. Immunopharmacol Immunotoxicol 27:53–66.  https://doi.org/10.1081/IPH-51294 CrossRefGoogle Scholar
  7. 7.
    Liao ZH, Gong YF, Kai GY, Zu KJ, Chen M, Tan QM, Wei YM, Guo L, Tan F, Sun XF, Tang KX (2005) An intron-free methyl jasmonate inducible geranylgeranyl diphosphate- synthase gene from Taxus media and its functional identification in yeast. Mol Biol 39:11–17.  https://doi.org/10.1007/s11008-005-0002-3 CrossRefGoogle Scholar
  8. 8.
    Jiang XH, Wong BC, Lin MC, Zhu GH, Kung HF, Jiang SH, Yang D, Lam SK (2001) Functional p53 is required for triptolide-induced apoptosis and AP-1 and nuclear factor-kappa B activation in gastric cancer cells. Oncogene 20:8009–8018.  https://doi.org/10.1038/sj.onc.1204981 CrossRefGoogle Scholar
  9. 9.
    Antonoff MB, Chugh R, Borja-Cacho D, Dudeja V, Clawson KA, Skube SJ, Sorenson BS, Saltzman DA, Vickers SM, Saluja AK (2009) Triptolide therapy for neuroblastoma decreases cell viability in vitro and inhibits tumor growth in vivo. Surgery 146:282–290.  https://doi.org/10.1159/000236859 CrossRefGoogle Scholar
  10. 10.
    He MF, Liu L, Ge W, Shaw PC, Jiang R, Wu LW, But PP (2009) Antiangiogenic activity of Tripterygium wilfordii and its terpenoids. J Ethnopharmacol 121:61–68.  https://doi.org/10.1016/jjep.2008.09.033 CrossRefGoogle Scholar
  11. 11.
    Zhu WB, He SM, Li Y, Qiu PX, Shu MF, Ou YQ, Zhou YH, Leng TD, Xie J, Zheng XK, Xu D, Su XW, Yan GM (2010) Anti-angiogenic activity of triptolide in anaplastic thyroid carcinoma is mediated by targeting vascular endothelial and tumor cells. Vascul Pharmacol 52:46–54.  https://doi.org/10.1016/j.vph.2009.10.006 CrossRefGoogle Scholar
  12. 12.
    He MF, Huang YH, Wu LW, Ge W, Shaw PC, But PP (2010) Triptolide functions as a potent angiogenesis inhibitor. Int J Cancer 126:266–278.  https://doi.org/10.1002/ijc.24694 CrossRefGoogle Scholar
  13. 13.
    Chervoneva I, Li Y, Schulz S, Croker S, Wilson C, Waldman SA, Hyslop T (2010) Selection of optimal reference genes for normalization in quantitative RT-PCR. BMC Bioinform 11:1–15.  https://doi.org/10.1186/1471-2105-11-253 CrossRefGoogle Scholar
  14. 14.
    Brunner AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4:14.  https://doi.org/10.1186/1471-2229-4-14 CrossRefGoogle Scholar
  15. 15.
    Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651.  https://doi.org/10.1016/j.bbrc.2006.04.140 CrossRefGoogle Scholar
  16. 16.
    Xu ZC, Xu J, Ji AJ, Zhu YJ, Zhang X, Hu YL, Song JY, Chen SL (2015) Genome-wide selection of superior reference genes for expression studies in Ganoderma lucidum. Gene 574:352–358.  https://doi.org/10.1016/j.gene.2015.08.025 CrossRefGoogle Scholar
  17. 17.
    He YH, Yan HL, Hua WP, Huang YY, Wang ZZ (2016) Selection and validation of reference genes for quantitative real-time PCR in Gentiana macrophylla. Front Plant Sci 7:945.  https://doi.org/10.3389/fpls.2016.00945 Google Scholar
  18. 18.
    Zhao XT, Zhang XL, Guo XB, Li SJ, Han LL, Song ZH, Wang YY, Li JH, Li MJ (2016) Identification and validation of reference genes for qRT-PCR studies of gene expression in Dioscorea opposita. Biomed Res Int 2016:3089584.  https://doi.org/10.1155/2016/3089584 Google Scholar
  19. 19.
    Huang YX, Tan HX, Yu J, Chen Y, Guo ZY, Wang GQ, Zhang QL, Chen JF, Zhang L, Diao Y (2017) Stable internal reference genes for normalizing real-time quantitative PCR in Baphicacanthus cusia under hormonal stimuli and UV irradiation, and in different plant organs. Front Plant Sci 8:668.  https://doi.org/10.3389/fpls.2017.00668 CrossRefGoogle Scholar
  20. 20.
    Li T, Wang J, Lu M, Zhang TY, Qu XY, Wang ZZ (2017) Selection and validation of appropriate reference GENES for qRT-PCR analysis in isatis indigotica fort. Front Plant Sci 8:1139.  https://doi.org/10.3389/fpls.2017.01139 CrossRefGoogle Scholar
  21. 21.
    Gulshan K, Anil KS (2015) Reference gene validation for qRT-PCR based gene expression studies in different developmental stages and under biotic stress in apple. Sci Hortic 197:597–606.  https://doi.org/10.1016/j.scienta.2015.10.025 CrossRefGoogle Scholar
  22. 22.
    Miao GP, Li W, Zhang B, Zhang ZF, Ma ZQ, Feng JT, Zhang X, Zhu CS (2015) Identification of genes involved in the biosynthesis of Tripterygium wilfordii Hook.f. secondary metabolites by suppression subtractive hybridization. Plant Mol Biol Rep 33:756–769.  https://doi.org/10.1007/s11105-014-0792-3 CrossRefGoogle Scholar
  23. 23.
    Miao GP, Han J, Zhang JF, Zhu CS, Zhang X (2017) A MDR transporter contributes to the different extracellular production of sesquiterpene pyridine alkaloids between adventitious root and hairy root liquid cultures of Tripterygium wilfordii Hook.f. Plant Mol Biol 95:51–62.  https://doi.org/10.1007/s11103-017-0634-4 CrossRefGoogle Scholar
  24. 24.
    Zhang B, Liu Y, Chen MM, Feng JT, Ma ZQ, Zhang X, Zhu CS (2018) Cloning, expression analysis and functional characterization of squalene synthase (SQS) in Tripterygium wilfordii. Molecules 23:269.  https://doi.org/10.3390/molecules23020269 CrossRefGoogle Scholar
  25. 25.
    Su P, Guan HY, Zhang YF, Wang X, Gao LH, Zhao YJ, Hu TY, Zhou JW, Ma BW, Tu LC, Tong YR, Huang LQ, Gao W (2017) Probing the Single Key Amino Acid Responsible for the Novel Catalytic Function of ent-Kaurene Oxidase Supported by NADPH-Cytochrome P450 Reductases in Tripterygium wilfordii. Front Plant Sci 8:1756.  https://doi.org/10.3389/fpls.2017.01756 CrossRefGoogle Scholar
  26. 26.
    Zhang J, Huo YB, Liu Y, Feng JT, Ma ZQ, Zhu CS, Zhang X (2017) Differential expressed analysis of Tripterygium wilfordii unigenes involved in terpenoid backbone biosynthesis. J Asian Nat Prod Res 19(8):823–832.  https://doi.org/10.1080/10286020.2016.1232713 CrossRefGoogle Scholar
  27. 27.
    Zhang YF, Zhao YJ, Wang JD, Hu TY, Tong YR, Zhou JW, Song YD, Gao W, Huang LQ (2017) Overexpression and RNA interference of TwDXR regulate the accumulation of terpenoid active ingredients in Tripterygium wilfordii. Biotech Lett 40(2):1–7.  https://doi.org/10.1007/s10529-017-2484-1 Google Scholar
  28. 28.
    Tong Y, Zhang M, Su P, Zhao Y, Wang X, Zhang X (2016) Cloning and functional characterization of an isopentenyl diphosphate isomerase gene from Tripterygium wilfordii. Biotechnol Appl Biochem 63(6):863–869.  https://doi.org/10.1002/bab.1427 CrossRefGoogle Scholar
  29. 29.
    Guan HY, Zhao YJ, Su P, Tong YR, Liu YJ, Hu TY, Zhang YF, Zhang XA, Li J, Wu XY, Huang LQ, Gao W (2017) Molecular cloning and functional identification of sterol C24-methyltransferase gene from Tripterygium wilfordii. Acta Pharmaceut Sin B 7(5):603–609.  https://doi.org/10.1016/j.apsb.2017.07.001 CrossRefGoogle Scholar
  30. 30.
    Su P, Guan HY, Zhao YJ, Tong YR, Xu MM, Zhang YF, Hu TY, Yang J, Cheng QQ, Gao LH, Liu YJ, Zhou JW, Reuben JP, Huang LQ, Gao W (2018) Identification and functional characterization of diterpene synthases for triptolide biosynthesis from Tripterygium wilfordii. Plant J 93(1):50–65.  https://doi.org/10.1111/tpj.13756 CrossRefGoogle Scholar
  31. 31.
    Zhao YJ, Zhang YF, Su P, Yang J, Huang LQ, Gao W (2018) Genetic transformation system for woody plant Tripterygium wilfordii and its application to product natural celastrol. Front Plant Sci 8:2221.  https://doi.org/10.3389/fpls.2017.02221 CrossRefGoogle Scholar
  32. 32.
    Nikolaj LH, Allison MH, Britta H, Carl EO, Björn MH, Johan AR, Björn H (2017) The terpene synthase gene family in Tripterygium wilfordii harbors a labdane-type diterpene synthase among the monoterpene synthase TPS-b subfamily. Plant J 89:429–441.  https://doi.org/10.1111/tpj.13410 CrossRefGoogle Scholar
  33. 33.
    Zhu CS, Miao GP, Guo J, Huo YB, Zhang X, Xie JH, Feng JT (2014) Establishment of Tripterygium wilfordii Hook.f. hairy root culture and optimization of its culture conditions for the production of triptolide and wilforine. J Microbiol Biotechnol 24:823–834.  https://doi.org/10.4014/jmb.1402.02045 CrossRefGoogle Scholar
  34. 34.
    Sun HP, Li F, Ruan QM, Zhong XH (2016) Identification and validation of reference genes for quantitative real-time PCR studies in Hedera helix L. Plant Physiol Biochem 108:286–294.  https://doi.org/10.1371/journal.pone.0106800 CrossRefGoogle Scholar
  35. 35.
    Vinayak HL, Tukaram DN, Suprasanna P (2010) Differential osmotic adjustment to iso- osmotic NaCl and PEG stress in the in vitro Cultures of Sesuvium portulacastrum (L.) L. J Crop Sci Biotechnol 13(4):251–256.  https://doi.org/10.1007/s12892-010-0008-9 CrossRefGoogle Scholar
  36. 36.
    Miao GP, Zhu CS, Yang YQ, Feng MX, Ma ZQ, Feng JT, Zhang X (2014) Elicitation and in situ adsorption enhanced secondary metabolites production of Tripterygium wilfordii Hook. f. adventitious root fragment liquid cultures in shake flask and a modified bubble column bioreactor. Bioprocess Biosyst Eng 37:641–650.  https://doi.org/10.1007/s00449-013-1033-0 CrossRefGoogle Scholar
  37. 37.
    Ginzinger DG (2002) Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol 30(6):503–512.  https://doi.org/10.1016/S0301-472X(02)00806-8 CrossRefGoogle Scholar
  38. 38.
    Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17.  https://doi.org/10.1104/pp.105.063743 CrossRefGoogle Scholar
  39. 39.
    Julia H, Florian MWG (2007) Identification of reference genes for qRT-PCR studies of gene expression in giant cells and syncytia induced in Arabidopsis thaliana by Meloidogyne incognita and Heterodera schachtii. Nematology 9:317–323.  https://doi.org/10.1163/156854107781352034 CrossRefGoogle Scholar
  40. 40.
    Vandesompele J, Preter KD, Pattyn F, Poppe B, Roy NV, Paepe AD, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):0034.1–0034.11.  https://doi.org/10.1186/gb-2002-3-7-research0034 CrossRefGoogle Scholar
  41. 41.
    Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Can Res 64:5245–5250.  https://doi.org/10.1158/0008-5472.can-04-0496 CrossRefGoogle Scholar
  42. 42.
    Silver N, Best S, Jiang J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7:33.  https://doi.org/10.1186/1471-2199-7-33 CrossRefGoogle Scholar
  43. 43.
    Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: Bestkeeper - excel-based tool using pair-wise correlations. Biotech Lett 26:509–515.  https://doi.org/10.1023/B:BILE.0000019559.84305.47 CrossRefGoogle Scholar
  44. 44.
    Xie F, Peng X, Chen D, Xu L, Zhang B (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80:75–84.  https://doi.org/10.1007/s11103-012-9885-2 CrossRefGoogle Scholar
  45. 45.
    Herz S, Wungsintaweekul J, Schulir CA, Hecht S, Luttgen H, Sagner S, Fellermeier M, Eisenreich W, Zenk MH, Bacher A, Rohdich F (2000) Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-d-erythritol 2,4-cyclodiphosphate. Proc Natl Acad Sci USA 97:2486–2490.  https://doi.org/10.1073/pnas.040554697 CrossRefGoogle Scholar
  46. 46.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene xpression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  47. 47.
    Hemmerlin A, Harwood JL, Bach TJ (2012) A raison d’être for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog Lipid Res 51:95–148.  https://doi.org/10.1016/j.plipres.2011.12.001 CrossRefGoogle Scholar
  48. 48.
    Hong SY, Seo PJ, Yang M, Xiang F, Park CM (2008) Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biol 8:112.  https://doi.org/10.1186/1471-2229-8-112 CrossRefGoogle Scholar
  49. 49.
    Guo J, Hui L, Wu Q, Xu L, Que Y (2014) The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep 4:7042.  https://doi.org/10.1038/srep07042 CrossRefGoogle Scholar
  50. 50.
    Enjuto M, Balcells L, Campos N, Caelles C, Arró M, Boronat A (1994) Arabidopsis thaliana contains two differentially expressed 3-hydroxy-3-methylglutaryl-CoA reductase genes, which encode microsomal forms of the enzyme. Proc Natl Acad Sci USA 91:927–931.  https://doi.org/10.1073/pnas.91.3.927 CrossRefGoogle Scholar
  51. 51.
    Campos N, Boronat A (1995) Targeting and topology in the membrane of plant 3-hydroxy-3- methylglutaryl coenzyme A reductase. Plant Cell 7:2163–2174.  https://doi.org/10.1105/tpc.7.12.2163 CrossRefGoogle Scholar
  52. 52.
    Pauwels L, Inzé D, Goossens A (2009) Jasmonate-inducible gene: what does it mean? Trends Plant Sci 14:87–91.  https://doi.org/10.1016/j.tplants.2008.11.005 CrossRefGoogle Scholar
  53. 53.
    Miao GP, Zhu CS, Feng JT, Han J, Song XW, Zhang X (2012) Aggregate cell suspension cultures of Tripterygium wilfordii Hook. f. for triptolide, wilforgine, and wilforine production. Plant Cell, Tissue Organ Cult 112:109–116.  https://doi.org/10.1007/s11240-012-0211-0 CrossRefGoogle Scholar
  54. 54.
    Jiang Q, Wang F, Li MY, Ma J, Tan GF, Xiong AS (2014) Selection of suitable reference genes for Qpcr normalization under abiotic stresses in Oenanthe javanica (BI.) DC. PLoS ONE 9(3):e92262.  https://doi.org/10.1371/journal.pone.0092262 CrossRefGoogle Scholar
  55. 55.
    Won-Jae L, Ryoung-Hoon J, Si-Jung J, Ji-Sung P, Seung-Chan L, Raghavendra BS et al (2015) Selection of reference genes for quantitative gene expression in porcine mesenchymal stem cells derived from various sources along with differentiation into multilineages. Stem Cells Int 2015:1–14.  https://doi.org/10.1155/2015/235192 Google Scholar
  56. 56.
    Hu Y, Chen H, Luo C, Dong L, Zhang SW, He XH, Huang GX (2014) Selection of reference genes for real-time quantitative pcr studies of kumquat in various tissues and under abiotic stress. Sci Hortic 174:207–216.  https://doi.org/10.1016/j.scienta.2013.12.003 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jing Zhang
    • 1
    • 2
  • Chuan-shu Zhu
    • 1
    • 2
  • Yan-bo Huo
    • 1
  • Bin Zhang
    • 1
  • Zhi-qing Ma
    • 1
    • 2
  • Jun-tao Feng
    • 1
    • 2
    Email author
  • Xing Zhang
    • 1
    • 2
  1. 1.Research & Development Center of Biorational PesticidesNorthwest A & F UniversityYanglingChina
  2. 2.Research Center of Biopesticide Technology & Engineering CenterYanglingChina

Personalised recommendations