Molecular Biology Reports

, Volume 46, Issue 4, pp 4085–4094 | Cite as

Myositis in Lewis rats induced by the superantigen Staphylococcal enterotoxin A

  • Alexander EmmerEmail author
  • Abimbola Abobarin-Adeagbo
  • Andreas Posa
  • Berit Jordan
  • Karl-Stefan Delank
  • Martin Sebastian Staege
  • Alexander Surov
  • Stephan Zierz
  • Malte Erich Kornhuber
Original Article


The aetiology of inflammatory myopathies is not clearly known. A predominance of activated Cd8+ T lymphocytes in inflammatory infiltrates has already been detected. Superantigens activate lymphocytes in an oligoclonal manner. In the present investigation, we investigated local effects after injection of the superantigen (Sag) Staphylococcus enterotoxin A (SEA) in the quadriceps femoris muscle of Lewis rats. Histopathology and gene expression profiling was performed after injection of SEA or saline (control group) after one, three and 10 days. Histology revealed focal myositis predominated by Cd8+ T lymphocytes with a perimysial, endomysial and perivascular distribution, peaking 3 days after SEA injection. Using DNA microarray analysis (Affymetrix Rat Genome 230 2.0) genes that were differentially over-expressed at least 15 times at days one, three or ten after SEA injection were further analysed. One day after SEA injection over-expressed genes were related to the immune response (e.g. Fcnb, CD8a) but also to cell proliferation, differentiation and migration (e.g. Mpp2). Three days after SEA injection, differentially overexpressed genes were mainly related to the immune reaction with a clear signature for a Cd8+ T lymphocyte response (e.g. Cd3d, Cd8, Prf1, Gzmb). Ten days after SEA injection, the differentially overexpressed genes were again associated with the immune reaction (e.g. Cd3d, Il2) but also with regenerative processes and wound healing (e.g. Tgfa, Tpm1, Ripply1). The inflammatory response induced by SEA in Lewis rats shares histological and molecular similarities to polymyositis in humans. Therefore, SEA induced myositis can be taken as a new and apt model for polymyositis.


Myositis Superantigen Staphylococcal enterotoxin A (SEA) Animal model CD8+ T-lymphocytes Microarray analysis 



We acknowledge the support by Novartis Pharma GmbH and by the research Grant (Grant No. FKZ 28/45) of the Wilhelm-Roux program of the Martin Luther University Halle-Wittenberg. We also acknowledge the excellent technical support by Angela Rosemeier.

Author contributions

AE and MEK designed the study AA, AP, BJ, AS, and MSS performed experiments, all authors analyzed the data and wrote the paper.

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest in this work.

Supplementary material

11033_2019_4858_MOESM1_ESM.docx (39 kb)
Supplementary material 1 (DOCX 39 kb)


  1. 1.
    Greenberg SA (2008) Inflammatory myopathies: evaluation and management. Semin Neurol 28:241–249CrossRefGoogle Scholar
  2. 2.
    Adler BL, Christopher-Stine L (2018) Triggers of inflammatory myopathy: insights into pathogenesis. Discov Med 25:75–83Google Scholar
  3. 3.
    Mandel DE, Malemud CJ, Askari AD (2017) Idiopathic inflammatory myopathies: a review of the classification and impact of pathogenesis. Int J Mol Sci 18:E1084CrossRefGoogle Scholar
  4. 4.
    Bradshaw EM, Orihuela A, McArdel SL, Salajegheh M, Amato AA, Hafler DA, Greenberg SA, O’Connor KC (2007) A local antigen-driven humoral response is present in the inflammatory myopathies. J Immunol 178:547–556CrossRefGoogle Scholar
  5. 5.
    Mantegazza R, Andreetta F, Bernasconi P, Baggi F, Oksenberg JR, Simoncini O, Mora M, Cornelio F, Steinman L (1993) Analysis of T cell receptor repertoire of muscle-infiltrating T lymphocytes in polymyositis. Restricted V alpha/beta rearrangements may indicate antigen-driven selection. J Clin Invest 91:2880–2886CrossRefGoogle Scholar
  6. 6.
    Lindberg C, Oldfors A, Tarkowski A (1994) Restricted use of T cell receptor V genes in endomysial infiltrates of patients with inflammatory myopathies. Eur J Immunol 24:2659–2663CrossRefGoogle Scholar
  7. 7.
    Fyhr IM, Moslemi AR, Tarkowski A, Lindberg C, Oldfors A (1996) Limited T-cell receptor V gene usage in inclusion body myositis. Scand J Immunol 43:109–114CrossRefGoogle Scholar
  8. 8.
    Dimitri D, Benveniste O, Dubourg O, Maisonobe T, Eymard B, Amoura Z, Jean L, Tiev K, Piette JC, Klatzmann D, Herson S, Boyer O (2006) Shared blood and muscle CD8+ T-cell expansions in inclusion body myositis. Brain 129:986–995CrossRefGoogle Scholar
  9. 9.
    Bender A, Ernst N, Iglesias A, Dornmair K, Wekerle H, Hohlfeld R (1995) T cell receptor repertoire in polymyositis: clonal expansion of autoaggressive CD8+ T cells. J Exp Med 181:1863–1868CrossRefGoogle Scholar
  10. 10.
    Fyhr IM, Moslemi AR, Mosavi AA, Lindberg C, Tarkowski A, Oldfors A (1997) Oligoclonal expansion of muscle infiltrating T cells in inclusion body myositis. J Neuroimmunol 79:185–189CrossRefGoogle Scholar
  11. 11.
    van der Meulen MF, van Wichen DF, van Blokland WT, van den Berg LH, Wokke JH, Hoogendijk JE, de Weger RA (2002) Evidence for heterogeneity of T cell expansion in polymyositis and inclusion body myositis. J Neuroimmunol 133:198–204CrossRefGoogle Scholar
  12. 12.
    Currier JR, Deulofeut H, Barron KS, Kehn PJ, Robinson M (1996) Mitogens, superantigens, and nominal antigens elicit distinctive patterns of TCRB CDR3 diversity. Hum Immunol 48:39–51CrossRefGoogle Scholar
  13. 13.
    Bueno C, Criado G, McCormick JK, Madrenas J (2007) T cell signalling induced by bacterial superantigens. Chem Immunol Allergy 93:161–180CrossRefGoogle Scholar
  14. 14.
    Li H, Llera A, Malchiodi EL, Mariuzza RA (1999) The structural basis of T cell activation by superantigens. Annu Rev Immunol 17:435–466CrossRefGoogle Scholar
  15. 15.
    Gröger V, Cynis H (2018) Human endogenous retroviruses and their putative role in the development of autoimmune disorders such as multiple sclerosis. Front Microbiol 9:265CrossRefGoogle Scholar
  16. 16.
    Emmer A, Gerlach K, Staege MS, Kornhuber ME (2010) T-cell subsets of the encephalitis induced by the superantigen staphylococcal enterotoxin A (SEA) in the Lewis rat: an immunohistochemical investigation. Cell Immunol 264:93–96CrossRefGoogle Scholar
  17. 17.
    Staege MS, Hansen G, Baersch G, Burdach S (2004) Functional and molecular characterization of interleukin-2 transgenic Ewing tumor cells for in vivo immunotherapy. Pediatr Blood Cancer 43:23–34CrossRefGoogle Scholar
  18. 18.
    Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207–208CrossRefGoogle Scholar
  19. 19.
    Emmer A, Gerlach K, Staege MS, Kornhuber ME (2008) Cerebral gene expression of superantigen encephalitis in the lewis rat induced by staphylococcal enterotoxin A. Scand J Immunol 67:464–472CrossRefGoogle Scholar
  20. 20.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408CrossRefGoogle Scholar
  21. 21.
    Pimorady-Esfahani A, Grounds MD, McMenamin PG (1997) Macrophages and dendritic cells in normal and regenerating murine skeletal muscle. Muscle Nerve 20:158–166CrossRefGoogle Scholar
  22. 22.
    Gerlach K, Tomuschat C, Finke R, Staege MS, Brütting C, Brandt J, Jordan B, Schwesig R, Rosemeier A, Delank KS, Kornhuber ME, Emmer A (2017) Experimental arthritis in the rat induced by the superantigen staphylococcal enterotoxin A. Scand J Immunol 85:191–196CrossRefGoogle Scholar
  23. 23.
    Chapes SK, Herpich AR (1998) Complex high affinity interactions occur between MHCI and superantigens. J Leukoc Biol 64:587–594CrossRefGoogle Scholar
  24. 24.
    Mantegazza R, Bernasconi P (1994) Cellular aspects of myositis. Curr Opin Rheumatol 6:568–574CrossRefGoogle Scholar
  25. 25.
    Goebels N, Michaelis D, Engelhardt M, Huber S, Bender A, Pongratz D, Johnson MA, Wekerle H, Tschopp J, Jenne D, Hohlfeld R (1996) Differential expression of perforin in muscle-infiltrating T cells in polymyositis and dermatomyositis. J Clin Invest 97:2905–2910CrossRefGoogle Scholar
  26. 26.
    Stoeckle C, Gouttefangeas C, Hammer M, Weber E, Melms A, Tolosa E (2009) Cathepsin W expressed exclusively in CD8+ T cells and NK cells, is secreted during target cell killing but is not essential for cytotoxicity in human CTLs. Exp Hematol 37:266–275CrossRefGoogle Scholar
  27. 27.
    Wallin JJ, Liang L, Bakardjiev A, Sha WC (2001) Enhancement of CD8+ T cell responses by ICOS/B7 h costimulation. J Immunol 167:132–139CrossRefGoogle Scholar
  28. 28.
    Schmidt J, Rakocevic G, Raju R, Dalakas MC (2004) Upregulated inducible co-stimulator (ICOS) and ICOS-ligand in inclusion body myositis muscle: significance for CD8+ T cell cytotoxicity. Brain 127:1182–1190CrossRefGoogle Scholar
  29. 29.
    Geng L, Pfister S, Kraeft SK, Rudd CE (2001) Adaptor FYB (Fyn-binding protein) regulates integrin-mediated adhesion and mediator release: differential involvement of the FYB SH3 domain. Proc Natl Acad Sci USA 98:11527–11532CrossRefGoogle Scholar
  30. 30.
    Tucci M, Quatraro C, Dammacco F, Silvestris F (2006) Interleukin-18 overexpression as a hallmark of the activity of autoimmune inflammatory myopathies. Clin Exp Immunol 146:21–31CrossRefGoogle Scholar
  31. 31.
    Intlekofer AM, Takemoto N, Wherry EJ, Longworth SA, Northrup JT, Palanivel VR, Mullen AC, Gasink CR, Kaech SM, Miller JD, Gapin L, Ryan K, Russ AP, Lindsten T, Orange JS, Goldrath AW, Ahmed R, Reiner SL (2005) Effector and memory CD8 T cell fate coupled by T-bet and eomesodermin. Nat Immunol 6:1236–1244CrossRefGoogle Scholar
  32. 32.
    Schwartz RH (2003) T cell anergy. Annu Rev Immunol 21:305–334CrossRefGoogle Scholar
  33. 33.
    Niedergang F, Hémar A, Hewitt CR, Owen MJ, Dautry-Varsat A, Alcover A (1995) The Staphylococcus aureus enterotoxin B superantigen induces specific T cell receptor down-regulation by increasing its internalization. J Biol Chem 270:12839–12845CrossRefGoogle Scholar
  34. 34.
    Farrar MA, Schreiber RD (1993) The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol 11:571–611CrossRefGoogle Scholar
  35. 35.
    Padovan E, Spagnoli GC, Ferrantini M, Heberer M (2002) IFN-alpha2a induces IP-10/CXCL10 and MIG/CXCL9 production in monocyte-derived dendritic cells and enhances their capacity to attract and stimulate CD8 + effector T cells. J Leukoc Biol 71:669–676Google Scholar
  36. 36.
    Goring K, Huang Y, Mowat C, Léger C, Lim TH, Zaheer R, Mok D, Tibbles LA, Zygun D, Winston BW (2009) Mechanisms of human complement factor B induction in sepsis and inhibition by activated protein C. Am J Physiol Cell Physiol 296:1140–1150CrossRefGoogle Scholar
  37. 37.
    Yang M, Fan JJ, Wang J, Zhao Y, Teng Y, Liu P (2016) Association of the C2-CFB locus with non-infectious uveitis, specifically predisposed to Vogt-Koyanagi-Harada disease. Immunol Res 64:610–618CrossRefGoogle Scholar
  38. 38.
    Imamura H, Konomoto T, Tanaka E, Hisano S, Yoshida Y, Fujimura Y, Miyata T, Nunoi H (2015) Familial C3 glomerulonephritis associated with mutations in the gene for complement factor B. Nephrol Dial Transplant 30:862–864CrossRefGoogle Scholar
  39. 39.
    Lappin DF, Guc D, Hill A, McShane T, Whaley K (1992) Effect of interferon-gamma on complement gene expression in different cell types. Biochem J 281:437–442CrossRefGoogle Scholar
  40. 40.
    Legoedec J, Gasque P, Jeanne JF, Fontaine M (1995) Expression of the complement alternative pathway by human myoblasts in vitro: biosynthesis of C3, factor B, factor H and factor I. Eur J Immunol 25:3460–3466CrossRefGoogle Scholar
  41. 41.
    Burke B, Giannoudis A, Corke KP, Gill D, Wells M, Ziegler-Heitbrock L, Lewis CE (2003) Hypoxia-induced gene expression in human macrophages: implications for ischemic tissues and hypoxia-regulated gene therapy. Am J Pathol 163:1233–1243CrossRefGoogle Scholar
  42. 42.
    Zhao X, Liu Q, Du B, Li P, Cui Q, Han X, Du B, Yan D, Zhu X (2012) A novel accessory molecule Trim59 involved in cytotoxicity of BCG-activated macrophages. Mol Cells 34:263–270CrossRefGoogle Scholar
  43. 43.
    Birts CN, Barton CH, Wilton DC (2008) A catalytically independent physiological function for human acute phase protein group IIA phospholipase A2: cellular uptake facilitates cell debris removal. J Biol Chem 283:5034–5045CrossRefGoogle Scholar
  44. 44.
    Lim JP, Gosavi P, Mintern JD, Ross EM, Gleeson PA (2015) Sorting nexin 5 selectively regulates dorsal-ruffle-mediated macropinocytosis in primary macrophages. J Cell Sci 128:4407–4419CrossRefGoogle Scholar
  45. 45.
    Falcón-Pérez JM, Dell’Angelica EC (2007) Zinc transporter 2 (SLC30A2) can suppress the vesicular zinc defect of adaptor protein 3-depleted fibroblasts by promoting zinc accumulation in lysosomes. Exp Cell Res 313:1473–1483CrossRefGoogle Scholar
  46. 46.
    Howie D, Garcia Rueda H, Brown MH, Waldmann H (2013) Secreted and transmembrane 1A is a novel co-stimulatory ligand. PLoS ONE 8:e73610CrossRefGoogle Scholar
  47. 47.
    Floderer M, Prchal-Murphy M, Vizzardelli C (2014) Dendritic cell-secreted lipocalin2 induces CD8+ T-cell apoptosis, contributes to T-cell priming and leads to a TH1 phenotype. PLoS ONE 9:e101881CrossRefGoogle Scholar
  48. 48.
    Roudkenar MH, Kuwahara Y, Baba T, Roushandeh AM, Ebishima S, Abe S, Ohkubo Y, Fukumoto M (2007) Oxidative stress induced lipocalin 2 gene expression: addressing its expression under the harmful conditions. J Radiat Res (Tokyo) 48:39–44CrossRefGoogle Scholar
  49. 49.
    Zhang K, Dion N, Fuchs B, Damron T, Gitelis S, Irwin R, O’Connor M, Schwartz H, Scully SP, Rock MG, Bolander ME, Sarkar G (2002) The human homolog of yeast SEP1 is a novel candidate tumor suppressor gene in osteogenic sarcoma. Gene 298:121–127CrossRefGoogle Scholar
  50. 50.
    Okinaga T, Mohri I, Fujimura H, Imai K, Ono J, Urade Y, Taniike M (2002) Induction of hematopoietic prostaglandin D synthase in hyalinated necrotic muscle fibers: its implication in grouped necrosis. Acta Neuropathol 104:377–384Google Scholar
  51. 51.
    Lee KS, Squillace RM, Wang EH (2007) Expression pattern of muscleblind-like proteins differs in differentiating myoblasts. Biochem Biophys Res Commun 361:151–155CrossRefGoogle Scholar
  52. 52.
    Windner SE, Doris RA, Ferguson CM, Nelson AC, Valentin G, Tan H, Oates AC, Wardle FC, Devoto SH (2015) Tbx6, Mesp-b and Ripply1 regulate the onset of skeletal myogenesis in zebrafish. Development 142:1159–1168CrossRefGoogle Scholar
  53. 53.
    Berard JL, Zarruk JG, Arbour N, Prat A, Yong VW, Jacques FH, Akira S, David S (2012) Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis. Glia 60:1145–1159CrossRefGoogle Scholar
  54. 54.
    Frenette J, Cai B, Tidball JG (2000) Complement activation promotes muscle inflammation during modified muscle use. Am J Pathol 156:2103–2110CrossRefGoogle Scholar
  55. 55.
    International Multiple Sclerosis Genetics Consortium; Wellcome Trust Case Control Consortium 2, Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, Dilthey A, Su Z, Freeman C, Hunt SE, Edkins S, Gray E, Booth DR, Potter SC, Goris A, Band G, Oturai AB, Strange A, Saarela J, Bellenguez C, Fontaine B, Gillman M, Hemmer B, Gwilliam R, Zipp F, Jayakumar A, Martin R, Leslie S, Hawkins S, Giannoulatou E, D’alfonso S, Blackburn H, Martinelli Boneschi F, Liddle J, Harbo HF, Perez ML, Spurkland A, Waller MJ, Mycko MP, Ricketts M, Comabella M, Hammond N, Kockum I, McCann OT, Ban M, Whittaker P, Kemppinen A, Weston P, Hawkins C, Widaa S, Zajicek J, Dronov S, Robertson N, Bumpstead SJ, Barcellos LF, Ravindrarajah R, Abraham R, Alfredsson L, Ardlie K, Aubin C, Baker A, Baker K, Baranzini SE, Bergamaschi L, Bergamaschi R, Bernstein A, Berthele A, Boggild M, Bradfield JP, Brassat D, Broadley SA, Buck D, Butzkueven H, Capra R, Carroll WM, Cavalla P, Celius EG, Cepok S, Chiavacci R, Clerget-Darpoux F, Clysters K, Comi G, Cossburn M, Cournu-Rebeix I, Cox MB, Cozen W, Cree BA, Cross AH, Cusi D, Daly MJ, Davis E, de Bakker PI, Debouverie M, D’hooghe MB, Dixon K, Dobosi R, Dubois B, Ellinghaus D, Elovaara I, Esposito F, Fontenille C, Foote S, Franke A, Galimberti D, Ghezzi A, Glessner J, Gomez R, Gout O, Graham C, Grant SF, Guerini FR, Hakonarson H, Hall P, Hamsten A, Hartung HP, Heard RN, Heath S, Hobart J, Hoshi M, Infante-Duarte C, Ingram G, Ingram W, Islam T, Jagodic M, Kabesch M, Kermode AG, Kilpatrick TJ, Kim C, Klopp N, Koivisto K, Larsson M, Lathrop M, Lechner-Scott JS, Leone MA, Leppä V, Liljedahl U, Bomfim IL, Lincoln RR, Link J, Liu J, Lorentzen AR, Lupoli S, Macciardi F, Mack T, Marriott M, Martinelli V, Mason D, McCauley JL, Mentch F, Mero IL, Mihalova T, Montalban X, Mottershead J, Myhr KM, Naldi P, Ollier W, Page A, Palotie A, Pelletier J, Piccio L, Pickersgill T, Piehl F, Pobywajlo S, Quach HL, Ramsay PP, Reunanen M, Reynolds R, Rioux JD, Rodegher M, Roesner S, Rubio JP, Rückert IM, Salvetti M, Salvi E, Santaniello A, Schaefer CA, Schreiber S, Schulze C, Scott RJ, Sellebjerg F, Selmaj KW, Sexton D, Shen L, Simms-Acuna B, Skidmore S, Sleiman PM, Smestad C, Sørensen PS, Søndergaard HB, Stankovich J, Strange RC, Sulonen AM, Sundqvist E, Syvänen AC, Taddeo F, Taylor B, Blackwell JM, Tienari P, Bramon E, Tourbah A, Brown MA, Tronczynska E, Casas JP, Tubridy N, Corvin A, Vickery J, Jankowski J, Villoslada P, Markus HS, Wang K, Mathew CG, Wason J, Palmer CN, Wichmann HE, Plomin R, Willoughby E, Rautanen A, Winkelmann J, Wittig M, Trembath RC, Yaouanq J, Viswanathan AC, Zhang H, Wood NW, Zuvich R, Deloukas P, Langford C, Duncanson A, Oksenberg JR, Pericak-Vance MA, Haines JL, Olsson T, Hillert J, Ivinson AJ, De Jager PL, Peltonen L, Stewart GJ, Hafler DA, Hauser SL, McVean G, Donnelly P, Compston A (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219CrossRefGoogle Scholar
  56. 56.
    Kim K, Bang SY, Lee HS, Cho SK, Choi CB, Sung YK, Kim TH, Jun JB, Yoo DH, Kang YM, Kim SK, Suh CH, Shim SC, Lee SS, Lee J, Chung WT, Choe JY, Shin HD, Lee JY, Han BG, Nath SK, Eyre S, Bowes J, Pappas DA, Kremer JM, Gonzalez-Gay MA, Rodriguez-Rodriguez L, Ärlestig L, Okada Y, Diogo D, Liao KP, Karlson EW, Raychaudhuri S, Rantapää-Dahlqvist S, Martin J, Klareskog L, Padyukov L, Gregersen PK, Worthington J, Greenberg JD, Plenge RM, Bae SC (2015) High-density genotyping of immune loci in Koreans and Europeans identifies eight new rheumatoid arthritis risk loci. Ann Rheum Dis 74:e13CrossRefGoogle Scholar
  57. 57.
    Adler BL, Christopher-Stine L (2018) Triggers of inflammatory myopathy: insights into pathogenesis. Discov Med 25:75–83Google Scholar
  58. 58.
    Staege MS, Emmer A (2018) Editorial: endogenous viral elements-links between autoimmunity and cancer? Front Microbiol 20(9):3171CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Alexander Emmer
    • 1
    Email author
  • Abimbola Abobarin-Adeagbo
    • 1
  • Andreas Posa
    • 1
  • Berit Jordan
    • 1
  • Karl-Stefan Delank
    • 2
  • Martin Sebastian Staege
    • 3
  • Alexander Surov
    • 4
  • Stephan Zierz
    • 1
  • Malte Erich Kornhuber
    • 1
  1. 1.Department of NeurologyMartin Luther University Halle-WittenbergHalle (Saale)Germany
  2. 2.Department of Orthopaedic SurgeryMartin Luther University Halle-WittenbergHalle (Saale)Germany
  3. 3.Department of Surgical and Conservative Paediatrics and Adolescent MedicineMartin Luther University Halle-WittenbergHalle (Saale)Germany
  4. 4.Department of Diagnostic and Interventional RadiologyUniversity of LeipzigLeipzigGermany

Personalised recommendations