Advertisement

Analysis of differential gene expression of the transgenic pig with overexpression of PGC1α in muscle

  • Hao Gu
  • Jianan Li
  • Fei Ying
  • Bo Zuo
  • Zaiyan XuEmail author
Original Article
  • 64 Downloads

Abstract

In order to better understand the key regulatory mechanisms of PGC1α in muscle fiber type transition, the RNA-seq was used to compare the change of gene expression in gastrocnemius muscles between wild type pigs and transgenic pigs with overexpression of PGC1α gene in muscle. 371 differentially expressed genes (P ≤ 0.05 and Ratio ≥ 2), including 184 up-regulated genes and 187 down-regulated genes, were identified. Five main signaling pathways including metabolic pathways, ECM-receptor interaction, PPAR signaling pathway, adipocytokine signaling pathway and insulin signaling pathway, were authenticated using KEGG pathway analysis. Our results indicate that the fat metabolism pathway plays an important role in the transformation of muscle fiber types regulated by PGC1α.

Keywords

RNA-seq Transgenic pig PGC1α 

Notes

Acknowledgements

This work was financially supported by National Key Project for Transgenic Grant Nos. 2018ZX08010-12B and 2016ZX08006-002, The Natural Science Foundation of Hubei Province (Grant No. 2018CFA015) and the Fundamental Research Funds for the Central Universities (Program No. 2662018PY037).

Compliance with ethical standards

Conflict of interest

The authors have declared that no conflict of interest exists.

Supplementary material

11033_2019_4805_MOESM1_ESM.docx (3.4 mb)
Supplementary material 1 (DOCX 3463 kb)

References

  1. 1.
    Puigserver P, Wu Z, Park CW, Graves R, Wright M et al (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839CrossRefGoogle Scholar
  2. 2.
    Mitra R, Nogee DP, Zechner JF, Yea K, Gierasch CM et al (2012) The transcriptional coactivators, PGC-1α and β, cooperate to maintain cardiac mitochondrial function during the early stages of insulin resistance. J Mol Cell Cardiol 52:701–710CrossRefGoogle Scholar
  3. 3.
    Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124CrossRefGoogle Scholar
  4. 4.
    Vega RB, Huss JM, Kelly DP (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20:1868–1876CrossRefGoogle Scholar
  5. 5.
    Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z et al (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131–138CrossRefGoogle Scholar
  6. 6.
    Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM (2002) Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 277:1645–1648CrossRefGoogle Scholar
  7. 7.
    Lin J, Wu H, Tarr PT, Zhang CY, Wu Z et al (2002) Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418:797CrossRefGoogle Scholar
  8. 8.
    Ying F, Zhang L, Bu G, Xiong Y, Zuo B (2016) Muscle fiber-type conversion in the transgenic pigs with overexpression of PGC1α gene in muscle. Biochem Biophys Res Commun 480:669–674CrossRefGoogle Scholar
  9. 9.
    Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517CrossRefGoogle Scholar
  10. 10.
    Kwon SG, Hwang JH, Park DH, Kim TW, Kang DG et al (2016) Identification of differentially expressed genes associated with litter size in Berkshire pig placenta. PLoS ONE 11:e0153311CrossRefGoogle Scholar
  11. 11.
    Li C, Cai W, Zhou C, Yin H, Zhang Z et al (2016) RNA-Seq reveals 10 novel promising candidate genes affecting milk protein concentration in the Chinese Holstein population. Sci Rep 6:26813CrossRefGoogle Scholar
  12. 12.
    Suarez-Vega A, Gutierrez-Gil B, Klopp C, Tosser-Klopp G, Arranz JJ (2016) Comprehensive RNA-Seq profiling to evaluate lactating sheep mammary gland transcriptome. Sci Data 3:160051CrossRefGoogle Scholar
  13. 13.
    Li T, Wang S, Wu R, Zhou X, Zhu D et al (2012) Identification of long non-protein coding RNAs in chicken skeletal muscle using next generation sequencing. Genomics 99:292CrossRefGoogle Scholar
  14. 14.
    Yang H, Xu XL, Ma HM, Jiang J (2016) Integrative analysis of transcriptomics and proteomics of skeletal muscles of the Chinese indigenous Shaziling pig compared with the Yorkshire breed. BMC Genet 17:80CrossRefGoogle Scholar
  15. 15.
    Ayuso M, Fernández A, Núñez Y, Benítez R, Isabel B et al (2015) Comparative analysis of muscle transcriptome between pig genotypes identifies genes and regulatory mechanisms associated to growth, fatness and metabolism. PLoS ONE 10:e0145162CrossRefGoogle Scholar
  16. 16.
    Li Y, Xu Z, Li H, Xiong Y, Zuo B (2010) Differential transcriptional analysis between red and white skeletal muscle of Chinese Meishan pigs. Int J Biol Sci 6:350–360CrossRefGoogle Scholar
  17. 17.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408CrossRefGoogle Scholar
  18. 18.
    Draghici S, Khatri P, Tarca AL, Amin K, Done A et al (2007) A systems biology approach for pathway level analysis. Genome Res 17:1537CrossRefGoogle Scholar
  19. 19.
    Gouspillou G, Sgarioto N, Norris B, Barbat-Artigas S, Aubertin-Leheudre M et al (2014) The relationship between muscle fiber type-specific PGC-1α content and mitochondrial content varies between rodent models and humans. PLoS ONE 9:e103044CrossRefGoogle Scholar
  20. 20.
    Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10:355–361CrossRefGoogle Scholar
  21. 21.
    Barish GD, Narkar VA, Evans RM (2006) PPAR delta: a dagger in the heart of the metabolic syndrome. J Clin Invest 116:590–597CrossRefGoogle Scholar
  22. 22.
    Poulsen L, Siersbaek M, Mandrup S (2012) PPARs: fatty acid sensors controlling metabolism. Semin Cell Dev Biol 23:631–639CrossRefGoogle Scholar
  23. 23.
    Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 77:289–312CrossRefGoogle Scholar
  24. 24.
    Medina-Gomez G, Gray SL, Yetukuri L, Shimomura K, Virtue S et al (2007) PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet 3:e64CrossRefGoogle Scholar
  25. 25.
    Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P et al (1999) PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 4:585–595CrossRefGoogle Scholar
  26. 26.
    Schuler M, Ali F, Chambon C, Duteil D, Bornert JM et al (2006) PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab 4:407–414CrossRefGoogle Scholar
  27. 27.
    Kamei Y, Miura S, Suzuki M, Kai Y, Mizukami J et al (2004) Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem 279:41114–41123CrossRefGoogle Scholar
  28. 28.
    Dowell P, Otto TC, Adi S, Lane MD (2003) Convergence of peroxisome proliferator-activated receptor gamma and Foxo1 signaling pathways. J Biol Chem 278:45485CrossRefGoogle Scholar
  29. 29.
    Kang JS, Liu C, Derynck R (2009) New regulatory mechanisms of TGF-beta receptor function. Trends Cell Biol 19:385CrossRefGoogle Scholar
  30. 30.
    Langley B, Thomas MA, Sharma M, Gilmour S, Kambadur R (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277:49831–49840CrossRefGoogle Scholar
  31. 31.
    Hu W, Chen S, Zhang R, Lin Y (2013) Single nucleotide polymorphisms in the upstream regulatory region alter the expression of myostat. In Vitro Cell Dev Biol Anim 49:417–423CrossRefGoogle Scholar
  32. 32.
    Dunn SE, Chin ER, Michel RN (2000) Matching of calcineurin activity to upstream effectors is critical for skeletal muscle fiber growth. J Cell Biol 151:663–672CrossRefGoogle Scholar
  33. 33.
    Dunn S, Simard A, Bassel-Duby R, Williams R, Michel R (2001) Nerve activity-dependent modulation of calcineurin signaling in adult fast and slow skeletal muscle fibers. J Biol Chem 276:45243–45254CrossRefGoogle Scholar
  34. 34.
    Jr VI, Aguiar AF, de Souza RW, Almeida FL, Hb DAD et al (2013) NFAT isoforms regulate muscle fiber type transition without altering CaN during aerobic training. Int J Sports Med 34:861–867CrossRefGoogle Scholar
  35. 35.
    Liu Y, Shen T, Randall WR, Schneider MF (2005) Signaling pathways in activity-dependent fiber type plasticity in adult skeletal muscle. J Muscle Res Cell Motil 26:13–21CrossRefGoogle Scholar
  36. 36.
    Schnyder S, Handschin C (2015) Skeletal muscle as an endocrine organ: PGC-1Î ± , myokines and exercise. Bone 80:115–125CrossRefGoogle Scholar
  37. 37.
    Pontus BM, Jun W, Jedrychowski MP, Anisha K, Li Y et al (2013) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468Google Scholar
  38. 38.
    Roberts LD, Pontus BM, O’Sullivan JF, Schinzel RT, Lewis GD et al (2014) β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab 19:96–108CrossRefGoogle Scholar
  39. 39.
    Rao R, Long J, White J, Svensson K, Lou J et al (2014) Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157:1279–1291CrossRefGoogle Scholar
  40. 40.
    Zheng Q, Lin J, Huang J, Zhang H, Zhang R et al (2017) Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proc Natl Acad Sci USA 114:E9474CrossRefGoogle Scholar
  41. 41.
    Laurila E, Mootha VK, Lindgren CM, Eriksson KF, Subramanian A et al (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267CrossRefGoogle Scholar
  42. 42.
    Elizabeth PM, Butte AJ, Sarah C, Kenneth C, Rachele B et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100(14):8466–8471CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanPeople’s Republic of China
  2. 2.The Cooperative Innovation Center for Sustainable Pig ProductionWuhanPeople’s Republic of China

Personalised recommendations