Quantitative expression of microRNAs in Brassica oleracea infected with Xanthomonas campestris pv. campestris

  • Lucas Souza Santos
  • Mariana Rocha Maximiano
  • Esaú Megias
  • Marília Pappas
  • Simone Graça Ribeiro
  • Angela MehtaEmail author
Short Communication


Brassica oleracea var. capitata (cabbage) is an economically important crop affected by black rot disease caused by Xanthomonas campestris pv. campestris (Xcc). MicroRNAs (miRNAs) play an important role in plant defense modulation and therefore the analysis of these molecules can help better understand plant-pathogen interactions. In this study, we report the differential expression of four miRNAs that seem to participate in the plant response to Xcc infection. Northern Blot and RT-qPCR techniques were used to measure miRNA expression in resistant (União) and susceptible (Kenzan) cultivars. From 6 miRNAs analyzed, 4 were detected and differentially expressed, showing a down- and upregulated expression profile in susceptible and resistant cultivars, respectively. These results suggest that miR156, miR167, miR169, and miR390 could play a role in B. oleracea resistance enhancement against Xcc and could be explored as potential resistance markers in B. oleracea-Xcc interaction.


Black rot disease MicroRNAs RT-qPCR Northern blot Biomarkers 



This research was sponsored by Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hayward AC (1993) The hosts of Xanthomonas, In: Swings JG, Civerolo EL (eds) Xanthomonas, Chapman and Hall, London, pp 1–119.
  2. 2.
    Fargier E, Manceau C (2007) Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathol 56(5):805–818CrossRefGoogle Scholar
  3. 3.
    Cruz J, Tenreiro R, Cruz L (2017) Assessment of diversity of Xanthomonas campestris pathovars affecting cruciferous plants in Portugal and disclosure of two novel X. campestris pv. campestris races. J Plant Pathol 99(2):403–414Google Scholar
  4. 4.
    Alkhateeb RS et al (2017) Refined annotation of the complete genome of the phytopathogenic and xanthan producing Xanthomonas campestris pv. campestris strain B100 based on RNA sequence data. J Biotechnol 253:55–61CrossRefGoogle Scholar
  5. 5.
    Santos C et al (2017) Differential accumulation of Xanthomonas campestris pv. campestris proteins during the interaction with the host plant: Contributions of an in vivo system. Proteomics 17(12):1700086CrossRefGoogle Scholar
  6. 6.
    Ribeiro DG et al (2018) Brassica oleracea resistance-related proteins identified at an early stage of black rot disease. Physiol Mol Plant Pathol 104:9–14CrossRefGoogle Scholar
  7. 7.
    Afrin KS et al (2018) Identification of NBS-encoding genes linked to black rot resistance in cabbage (Brassica oleracea var. capitata). Mol Biol Reports 45(5):773–785CrossRefGoogle Scholar
  8. 8.
    Kruszka K et al (2012) Role of microRNAs and other sRNAs of plants in their changing environments. J Plant Physiol 169(16):1664–1672CrossRefGoogle Scholar
  9. 9.
    Rubio-Somoza I et al (2009) Regulation and functional specialization of small RNA–target nodes during plant development. Curr Opin Plant Biol 12(5):622–627CrossRefGoogle Scholar
  10. 10.
    Sunkar R et al (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12(7):301–309CrossRefGoogle Scholar
  11. 11.
    Carrington JC, Ambros V (2003) Role of MicroRNAs in plant and animal development. Science 301(5631):336CrossRefGoogle Scholar
  12. 12.
    Meng Y et al (2011) The regulatory activities of plant MicroRNAs: a more dynamic perspective. Plant Physiol 157(4):1583CrossRefGoogle Scholar
  13. 13.
    Islam W et al (2017) Host-pathogen interactions modulated by small RNAs. RNA Biol 14(7):891–904CrossRefGoogle Scholar
  14. 14.
    Sunkar R, Li Y-F, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17(4):196–203CrossRefGoogle Scholar
  15. 15.
    Islam W et al (2018) Plant microRNAs: front line players against invading pathogens. Microb Pathog 118:9–17CrossRefGoogle Scholar
  16. 16.
    Zhang W et al (2011) Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol 75(1):93–105CrossRefGoogle Scholar
  17. 17.
    Navarro L et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772):436CrossRefGoogle Scholar
  18. 18.
    Benkeblia N (2014) Omics technologies and crop improvement, 1st edn. CRC Press, Boca Raton, p 392CrossRefGoogle Scholar
  19. 19.
    Li Y et al (2017) Osa-miR169 negatively regulates rice immunity against the blast fungus magnaporthe oryzae. Front Plant Sci 8:2Google Scholar
  20. 20.
    Song S et al (2018) Identification and characterization of miRNA169 family members in banana (Musa acuminata L.) that respond to fusarium oxysporum f. sp. cubense infection in banana cultivars. Peer J 6:e6209CrossRefGoogle Scholar
  21. 21.
    Chen C et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179CrossRefGoogle Scholar
  22. 22.
    Alizadeh M, Askari H, Najafabadi (2017) Temporal expression of three conserved putative microRNAs in response of Citrus × Limon to Xanthomonas citri subsp. citri and Xanthomonas fuscans subsp. Aurantifolii. BioTechnologia 98(3):257–264CrossRefGoogle Scholar
  23. 23.
    Perez-Quintero AL et al (2012) Bioinformatic identification of cassava miRNAs differentially expressed in response to infection by Xanthomonas axonopodis pv. manihotis. BMC Plant Biol 12:29CrossRefGoogle Scholar
  24. 24.
    Giordano LB, Silva N, Cordeiro CMT (1985) Experimentos comparativos entre híbridos e cultivares de repolho. vol 3, no 1, Horticultura Brasileira, Brasília, pp 29–31Google Scholar
  25. 25.
    Giordano LB, Silva N, Buso JA (1988) União: nova cultivar de repolho para o verão. vol 6, no 1, Horticultura Brasileira, p 39Google Scholar
  26. 26.
    Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133(18):3539–3547CrossRefGoogle Scholar
  27. 27.
    Baksa I et al (2015) Identification of Nicotiana benthamiana microRNAs and their targets using high throughput sequencing and degradome analysis. BMC Genom 16:1025CrossRefGoogle Scholar
  28. 28.
    Czimmerer Z et al (2013) A versatile method to design stem-loop primer-based quantitative PCR assays for detecting small regulatory RNA molecules. PLoS ONE 8(1):e55168CrossRefGoogle Scholar
  29. 29.
    Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12(8):1047–1064CrossRefGoogle Scholar
  30. 30.
    He Y et al (2017) Self-cleaving ribozymes enable the production of guide RNAs from unlimited choices of promoters for CRISPR/Cas9 mediated genome editing. J Genet Genom 44(9):469–472CrossRefGoogle Scholar
  31. 31.
    Cho SH, Coruh C, Axtell MJ (2012) miR156 and miR390 regulate tasiRNA accumulation and developmental timing in Physcomitrella patens. Plant Cell 24(12):4837–4849CrossRefGoogle Scholar
  32. 32.
    Spanudakis E, Jackson S (2014) The role of microRNAs in the control of flowering time. J Exp Bot 65(2):365–380CrossRefGoogle Scholar
  33. 33.
    Rubio-Somoza I, Weigel D (2013) Coordination of flower maturation by a regulatory circuit of three MicroRNAs. PLoS Genet 9(3):e1003374CrossRefGoogle Scholar
  34. 34.
    Lu S et al (2007) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51(6):1077–1098CrossRefGoogle Scholar
  35. 35.
    Curaba J, Singh MB, Bhalla PL (2014) miRNAs in the crosstalk between phytohormone signalling pathways. J Exp Bot 65(6):1425–1438CrossRefGoogle Scholar
  36. 36.
    Li W-X et al (2008) The arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20(8):2238CrossRefGoogle Scholar
  37. 37.
    Zhou X et al (2008) Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochimica et Biophysica Acta (BBA) Gene Regulatory Mechanisms 1779(11):780–788CrossRefGoogle Scholar
  38. 38.
    Zhao B et al (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10(1):29CrossRefGoogle Scholar
  39. 39.
    Zhang X et al (2011) Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33(2):403–409CrossRefGoogle Scholar
  40. 40.
    Cui LG et al (2014) The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J 80(6):1108–1117CrossRefGoogle Scholar
  41. 41.
    Jodder J et al (2017) Coherent regulation of miR167a biogenesis and expression of auxin signaling pathway genes during bacterial stress in tomato. Physiol Mol Plant Pathol 100:97–105CrossRefGoogle Scholar
  42. 42.
    Liu N et al (2014) Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. J Exp Bot 65(9):2507–2520CrossRefGoogle Scholar
  43. 43.
    Fahlgren N et al (2007) High-throughput sequencing of arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE 2(2):e219CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Embrapa Recursos Genéticos e BiotecnologiaParque Estação Biológica, PqEBBrasíliaBrazil
  2. 2.Centro Universitário do Distrito FederalBrasíliaBrazil
  3. 3.Universidade Federal de Juiz de ForaJuiz de ForaBrazil
  4. 4.Universidad de CádizCádizSpain

Personalised recommendations