Advertisement

Production optimization, characterization, and covalent immobilization of a thermophilic Serratia rubidaea lipase isolated from an Algerian oil waste

  • Fatima Nehal
  • Mouna SahnounEmail author
  • Ahlem Dab
  • Mohammed Sebaihia
  • Samir Bejar
  • Bassem Jaouadi
Original Article
  • 13 Downloads

Abstract

A new thermophilic non-induced lipase producer named Serratia rubidaea strain Nehal-mou was isolated from oil waste in Tissemsilat, Algeria. The most influential lipase production parameters were screened by the Plackett–Burman design for enhancing enzyme yield. An optimum condition of a 1.5% of glucose, a 0.01% of potassium, and a 0.025% of manganese contents resulted in a 41.13 U/mL. This yield was 6.29 times higher than the one achieved before the application of the Box-Behnken Design. Lipase activity showed a high organic solvent tolerance following its exposure to hexane, ethanol, methanol, and acetone. Lipase was also perfectly stable in the presence of 10 mM Fe2+, K+, and Na+ ions with more than 75% of the retaining activity. The enzyme half-life times were 22 h, 90 min, and 25 min at 50, 60, and 70 °C respectively. Polyvinyl alcohol (PVA)/boric acid/Starch/CaCO3 were utilized as a carrier for lipase covalent immobilization in order to be used efficiently. The Scanning Electron Microscopy (SEM) Technique and the Fourier Transform Infrared Spectroscopy (FTIR) Method confirmed the covalent bonding success and the excellent carrier characteristics. Thus, the immobilization yield reached 73.5% and the optimum temperature was shifted from 40 to 65 °C. The immobilized lipase kept 80% of its total activity after 10 cycles and had 3 and 3.2-fold half-lives at 70, and 80 °C respectively compared to the free enzyme.

Keywords

Serratia rubidaea Lipase Thermal-stability Optimization Covalent immobilization SEM FTIR 

Notes

Acknowledgements

This research was supported by the Ministry of Higher Education and Scientific Research of  Tunisia under the contract program CBS-LMBEE/code. LR15CBS06 2015–2018 and Algeria.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Horchani H, Mosbah H, Salem NB, Gargouri Y, Sayari A (2009) Biochemical and molecular characterisation of a thermoactive, alkaline and detergent-stable lipase from a newly isolated Staphylococcus aureus strain. J Mol Catal B Enzym 56(4):237–245.  https://doi.org/10.1016/j.molcatb.2008.05.011 Google Scholar
  2. 2.
    Horchani H, Chaâbouni M, Gargouri Y, Sayari A (2010) Solvent-free lipase-catalyzed synthesis of long-chain starch esters using microwave heating: optimization by response surface methodology. Carbohyd Polym 79(2):466–474.  https://doi.org/10.1016/j.carbpol.2009.09.003 Google Scholar
  3. 3.
    Li X-L, Zhang W-H, Wang Y-D, Dai Y-J, Zhang H-T, Wang Y, Wang H-K, Lu F-P (2014) A high-detergent-performance, cold-adapted lipase from Pseudomonas stutzeri PS59 suitable for detergent formulation. J Mol Catal B Enzym 102:16–24.  https://doi.org/10.1016/j.molcatb.2014.01.006 Google Scholar
  4. 4.
    Pereira MG, Facchini FDA, Filó LEC, Polizeli AM, Vici AC, Jorge JA, Fernandez-Lorente G, Pessela BC, Guisan JM, Polizeli MdLTdM (2015) Immobilized lipase from Hypocrea pseudokoningii on hydrophobic and ionic supports: determination of thermal and organic solvent stabilities for applications in the oleochemical industry. Process Biochem 50(4):561–570.  https://doi.org/10.1016/j.procbio.2014.12.027 Google Scholar
  5. 5.
    Yu X-W, Tan N-J, Xiao R, Xu Y (2012) Engineering a Disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity. PLoS ONE 7(10):e46388.  https://doi.org/10.1371/journal.pone.0046388 Google Scholar
  6. 6.
    Li QS, Li GQ, Yu SS, Zhang ZM, Ma FQ, Feng Y (2011) Ring-opening polymerization of epsilon-caprolactone catalyzed by a novel thermophilic lipase from Fervidobacterium nodosum. Process Biochem 46(1):253–257.  https://doi.org/10.1016/j.procbio.2010.08.019 Google Scholar
  7. 7.
    Deive FJ, Alvarez MS, Moran P, Sanroman MA, Longo MA (2012) A process for extracellular thermostable lipase production by a novel Bacillus thermoamylovorans strain. Bioprocess Biosyst Eng 35(6):931–941.  https://doi.org/10.1007/s00449-011-0678-9 Google Scholar
  8. 8.
    Ferrarezi AL, Ohe THK, Borges JP, Brito RR, Siqueira MR, Vendramini PH, Quilles JC, da Costa Carreira Nunes C, Bonilla-Rodriguez GO, Boscolo M, Da-Silva R, Gomes E (2014) Production and characterization of lipases and immobilization of whole cell of the thermophilic Thermomucor indicae seudaticae N31 for transesterification reaction. J Mol Catal B Enzym 107:106–113.  https://doi.org/10.1016/j.molcatb.2014.05.012 Google Scholar
  9. 9.
    Golaki BP, Aminzadeh S, Karkhane AA, Yakhchali B, Farrokh P, Khaleghinejad SH, Tehrani AA, Mehrpooyan S (2015) Cloning, expression, purification, and characterization of lipase 3646 from thermophilic indigenous Cohnella sp. A01. Protein Expr Purif 109:120–126.  https://doi.org/10.1016/j.pep.2014.10.002 Google Scholar
  10. 10.
    Tayyab M, Rashid N, Akhtar M (2011) Isolation and identification of lipase producing thermophilic Geobacillus sp. SBS-4S: cloning and characterization of the lipase. J Biosci Bioeng 111(3):272–278.  https://doi.org/10.1016/j.jbiosc.2010.11.015 Google Scholar
  11. 11.
    Sharma A, Meena KR, Kanwar SS (2018) Molecular characterization and bioinformatics studies of a lipase from Bacillus thermoamylovorans BHK67. Int J Biol Macromol 107(Pt B):2131–2140.  https://doi.org/10.1016/j.ijbiomac.2017.10.092 Google Scholar
  12. 12.
    Kaushik R, Saran S, Isar J, Saxena RK (2006) Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. J Mol Catal B Enzym 40(3):121–126.  https://doi.org/10.1016/j.molcatb.2006.02.019 Google Scholar
  13. 13.
    Liu C-H, Lu W-B, Chang J-S (2006) Optimizing lipase production of Burkholderia sp. by response surface methodology. Process Biochem 41(9):1940–1944.  https://doi.org/10.1016/j.procbio.2006.04.013 Google Scholar
  14. 14.
    Açıkel Ü, Erşan M, Sağ Açıkel Y (2010) Optimization of critical medium components using response surface methodology for lipase production by Rhizopus delemar. Food Bioprod Process 88(1):31–39.  https://doi.org/10.1016/j.fbp.2009.08.003 Google Scholar
  15. 15.
    Patnala HS, Kabilan U, Gopalakrishnan L, Rao RM, Kumar DS (2016) Marine fungal and bacterial isolates for lipase production: a comparative study. Adv Food Nutr Res 78:71–94.  https://doi.org/10.1016/bs.afnr.2016.06.001 Google Scholar
  16. 16.
    Huang Y, Locy R, Weete JD (2004) Purification and characterization of an extracellular lipase from Geotrichum marinum. Lipids 39(3):251–257Google Scholar
  17. 17.
    Sarethy IP, Saxena Y, Kapoor A, Sharma M, Sharma SK, Gupta V, Gupta S (2011) Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 38(7):769–790.  https://doi.org/10.1007/s10295-011-0968-x Google Scholar
  18. 18.
    Iyer PV, Ananthanarayan L (2008) Enzyme stability and stabilization—aqueous and non-aqueous environment. Process Biochem 43(10):1019–1032.  https://doi.org/10.1016/j.procbio.2008.06.004 Google Scholar
  19. 19.
    Jin Q, Jia G, Zhang Y, Yang Q, Li C (2011) Hydrophobic surface induced activation of Pseudomonas cepacia lipase immobilized into mesoporous silica. Langmuir 27(19):12016–12024.  https://doi.org/10.1021/la202794t Google Scholar
  20. 20.
    Hernandez K, Garcia-Galan C, Fernandez-Lafuente R (2011) Simple and efficient immobilization of lipase B from Candida antarctica on porous styrene-divinylbenzene beads. Enzyme Microb Technol 49(1):72–78.  https://doi.org/10.1016/j.enzmictec.2011.03.002 Google Scholar
  21. 21.
    Bellusci M, Francolini I, Martinelli A, D’Ilario L, Piozzi A (2012) Lipase immobilization on differently functionalized vinyl-based amphiphilic polymers: influence of phase segregation on the enzyme hydrolytic activity. Biomacromol 13(3):805–813.  https://doi.org/10.1021/bm2017228 Google Scholar
  22. 22.
    Manoel EA, dos Santos JCS, Freire DMG, Rueda N, Fernandez-Lafuente R (2015) Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme Microbial Technol 71:53–57.  https://doi.org/10.1016/j.enzmictec.2015.02.001 Google Scholar
  23. 23.
    Vaghari H, Jafarizadeh-Malmiri H, Mohammadlou M, Berenjian A, Anarjan N, Jafari N, Nasiri S (2016) Application of magnetic nanoparticles in smart enzyme immobilization. Biotechnol Lett 38(2):223–233.  https://doi.org/10.1007/s10529-015-1977-z Google Scholar
  24. 24.
    Rodrigues RC, Berenguer-Murcia Á, Fernandez-Lafuente R (2011) Coupling chemical modification and immobilization to improve the catalytic performance of enzymes. Adv Synth Catal 353(13):2216–2238.  https://doi.org/10.1002/adsc.201100163 Google Scholar
  25. 25.
    Kouker G, Jaeger KE (1987) Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53(1):211–213Google Scholar
  26. 26.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  27. 27.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874.  https://doi.org/10.1093/molbev/msw054 Google Scholar
  28. 28.
    Elibol M, Ozer D (2002) Response surface analysis of lipase production by freely suspended Rhizopus arrhizus. Process Biochem 38(3):367–372.  https://doi.org/10.1016/S0032-9592(02)00076-6 Google Scholar
  29. 29.
    Fickers P, Nicaud JM, Gaillardin C, Destain J, Thonart P (2004) Carbon and nitrogen sources modulate lipase production in the yeast Yarrowia lipolytica. J Appl Microbiol 96(4):742–749Google Scholar
  30. 30.
    Darvishi F, Nahvi I, Zarkesh-Esfahani H, Momenbeik F (2009) Effect of plant oils upon lipase and citric acid production in yarrowia lipolytica yeast. J Biomed Biotechnol.  https://doi.org/10.1155/2009/562943 Google Scholar
  31. 31.
    Cornell JA (1987) Response surfaces: designs and analyses. Marcel Dekker Inc., New YorkGoogle Scholar
  32. 32.
    Defranceschi Oliveira AC, Farion Watanabe FMF, Coelho Vargas JV, Fernandes Rodrigues ML, Bellin Mariano A (2012) Production of methyl oleate with a lipase from an endophytic yeast isolated from castor leaves. Biocatal Agric Biotechnol 1(4):295–300.  https://doi.org/10.1016/j.bcab.2012.06.004 Google Scholar
  33. 33.
    Wei H-N, Shi L-L, Wu B (2008) Production and characteristics of an enantioselective lipase from Burkholderia sp. GXU56. Chem Eng Technol 31(2):258–264.  https://doi.org/10.1002/ceat.200700348 Google Scholar
  34. 34.
    Amaral PFF, Rocha LMHM, Marrucho IM, Coutinho JAP, Coelho MAZ (2006) Improving lipase production using a perfluorocarbon as oxygen carrier. J Chem Technol Biotechnol 81(8):1368–1374.  https://doi.org/10.1002/jctb.1478 Google Scholar
  35. 35.
    Salihu A, Alam MZ, AbdulKarim MI, Salleh HM (2012) Lipase production: an insight in the utilization of renewable agricultural residues. Resour Conserv Recycl 58:36–44.  https://doi.org/10.1016/j.resconrec.2011.10.007 Google Scholar
  36. 36.
    Kaushik R, Marwah RG, Gupta P, Saran S, Saso L, Parmar VS, Saxena RK (2010) Optimization of lipase production from Aspergillus terreus by response surface methodology and its potential for synthesis of partial glycerides under solvent free conditions. Indian J Microbiol 50(4):456–462.  https://doi.org/10.1007/s12088-011-0100-y Google Scholar
  37. 37.
    Liu C-H, Huang C-C, Wang Y-W, Chang J-S (2012) Optimizing lipase production from isolated Burkholderia sp. J Taiwan Inst Chem Eng 43(4):511–516.  https://doi.org/10.1016/j.jtice.2012.02.004 Google Scholar
  38. 38.
    Teng Y, Xu Y (2008) Culture condition improvement for whole-cell lipase production in submerged fermentation by Rhizopus chinensis using statistical method. Biores Technol 99(9):3900–3907.  https://doi.org/10.1016/j.biortech.2007.07.057 Google Scholar
  39. 39.
    Ilmi M, Hidayat C, Hastuti P, Heeres HJ, van der Maarel MJEC (2017) Utilisation of Jatropha press cake as substrate in biomass and lipase production from Aspergillus niger 65I6 and Rhizomucor miehei CBS 360.62. Biocatal Agric Biotechnol 9:103–107.  https://doi.org/10.1016/j.bcab.2016.12.004 Google Scholar
  40. 40.
    Eom GT, Lee SH, Song BK, Chung K-W, Kim Y-W, Song JK (2013) High-level extracellular production and characterization of Candida antarctica lipase B in Pichia pastoris. J Biosci Bioeng 116(2):165–170.  https://doi.org/10.1016/j.jbiosc.2013.02.016 Google Scholar
  41. 41.
    Kawai E, Akatsuka H, Sakurai N, Idei A, Matsumae H, Shibatani T, Komatsubara S, Omori K (2001) Isolation and analysis of lipase-overproducing mutants of Serratia marcescens. J Biosci Bioeng 91(4):409–415Google Scholar
  42. 42.
    Matsumae H, Shibatani T (1994) Purification and characterization of the lipase from Serratia marcescens Sr41 8000 responsible for asymmetric hydrolysis of 3-phenylglycidic acid esters. J Ferment Bioeng 77(2):152–158.  https://doi.org/10.1016/0922-338X(94)90315-8 Google Scholar
  43. 43.
    Zhao L-L, Xu J-H, Zhao J, Pan J, Wang Z-L (2008) Biochemical properties and potential applications of an organic solvent-tolerant lipase isolated from Serratia marcescens ECU1010. Process Biochem 43(6):626–633.  https://doi.org/10.1016/j.procbio.2008.01.023 Google Scholar
  44. 44.
    Li X, Tetling S, Winkler UK, Jaeger KE, Benedik MJ (1995) Gene cloning, sequence analysis, purification, and secretion by Escherichia coli of an extracellular lipase from Serratia marcescens. Appl Environ Microbiol 61(7):2674–2680Google Scholar
  45. 45.
    Shariff FM, Rahman RN, Basri M, Salleh AB (2011) A newly isolated thermostable lipase from Bacillus sp. Int J Mol Sci 12(5):2917–2934.  https://doi.org/10.3390/ijms12052917 Google Scholar
  46. 46.
    Su E, Xu J, You P (2014) Functional expression of Serratia marcescens H30 lipase in Escherichia coli for efficient kinetic resolution of racemic alcohols in organic solvents. J Mol Catal B Enzym 106:11–16.  https://doi.org/10.1016/j.molcatb.2014.04.012 Google Scholar
  47. 47.
    Zheng Y-Y, Guo X-H, Song N-N, Li D-C (2011) Thermophilic lipase from Thermomyces lanuginosus: gene cloning, expression and characterization. J Mol Catal B Enzym 69(3):127–132.  https://doi.org/10.1016/j.molcatb.2011.01.006 Google Scholar
  48. 48.
    Kim KR, Kwon DY, Yoon SH, Kim WY, Kim KH (2005) Purification, refolding, and characterization of recombinant Pseudomonas fluorescens lipase. Protein Expr Purif 39(1):124–129.  https://doi.org/10.1016/j.pep.2004.09.014 Google Scholar
  49. 49.
    Glogauer A, Martini VP, Faoro H, Couto GH, Muller-Santos M, Monteiro RA, Mitchell DA, de Souza EM, Pedrosa FO, Krieger N (2011) Identification and characterization of a new true lipase isolated through metagenomic approach. Microb Cell Fact 10:54.  https://doi.org/10.1186/1475-2859-10-54 Google Scholar
  50. 50.
    Kanjanavas P, Khuchareontaworn S, Khawsak P, Pakpitcharoen A, Pothivejkul K, Santiwatanakul S, Matsui K, Kajiwara T, Chansiri K (2010) Purification and characterization of organic solvent and detergent tolerant lipase from thermotolerant Bacillus sp. RN2. Int J Mol Sci 11(10):3783–3792.  https://doi.org/10.3390/ijms11103783 Google Scholar
  51. 51.
    Yang KS, Sohn JH, Kim HK (2009) Catalytic properties of a lipase from Photobacterium lipolyticum for biodiesel production containing a high methanol concentration. J Biosci Bioeng 107(6):599–604.  https://doi.org/10.1016/j.jbiosc.2009.01.009 Google Scholar
  52. 52.
    Choo DW, Kurihara T, Suzuki T, Soda K, Esaki N (1998) A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp strain B11-1: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 64(2):486–491Google Scholar
  53. 53.
    Shan D, Wang S, Xue H, Cosnier S (2007) Direct electrochemistry and electrocatalysis of hemoglobin entrapped in composite matrix based on chitosan and CaCO3 nanoparticles. Electrochem Commun 9(4):529–534.  https://doi.org/10.1016/j.elecom.2006.10.032 Google Scholar
  54. 54.
    Gonzalez-Perez M, Hernández E, Ascencio J, Pacheco F, Pacheco S, Rodriguez R (2003) Hydroxyapatite crystals grown on a cellulose matrix using titanium alkoxide as a coupling agent 13:5.  https://doi.org/10.1039/b306846n Google Scholar
  55. 55.
    Cui C, Tao Y, Li L, Chen B, Tan T (2013) Improving the activity and stability of Yarrowia lipolytica lipase Lip2 by immobilization on polyethyleneimine-coated polyurethane foam. J Mol Catal B Enzym 91:59–66.  https://doi.org/10.1016/j.molcatb.2013.03.001 Google Scholar
  56. 56.
    Qi H, Du Y, Hu G, Zhang L (2018) Poly(carboxybetaine methacrylate)-functionalized magnetic composite particles: a biofriendly support for lipase immobilization. Int J Biol Macromol 107(Pt B):2660–2666.  https://doi.org/10.1016/j.ijbiomac.2017.10.150 Google Scholar
  57. 57.
    Liu X, Fang Y, Yang X, Li Y, Wang C (2018) Electrospun epoxy-based nanofibrous membrane containing biocompatible feather polypeptide for highly stable and active covalent immobilization of lipase. Colloids Surf B Biointerfaces 166:277–285.  https://doi.org/10.1016/j.colsurfb.2018.03.037 Google Scholar
  58. 58.
    Mehdi WA, Mehde AA, Özacar M, Özacar Z (2018) Characterization and immobilization of protease and lipase on chitin-starch material as a novel matrix. Int J Biol Macromol 117:947–958.  https://doi.org/10.1016/j.ijbiomac.2018.04.195 Google Scholar
  59. 59.
    Fujiwara M, Shiokawa K, Yotsuya K, Matsumoto K (2014) Immobilization of lipase from Burkholderia cepacia into calcium carbonate microcapsule and its use for enzymatic reactions in organic and aqueous media. J Mol Catal B Enzym 109:94–100.  https://doi.org/10.1016/j.molcatb.2014.08.009 Google Scholar
  60. 60.
    Maldonado RR, Aguiar-Oliveira E, Fogaça FM, Ramos GG, Macedo GA, Rodrigues MI (2015) Evaluation of partial purification and immobilization of lipase from Geotrichum candidum. Biocatal Agric Biotechnol 4(3):321–326.  https://doi.org/10.1016/j.bcab.2015.05.005 Google Scholar
  61. 61.
    Cui C, Tao Y, Ge C, Zhen Y, Chen B, Tan T (2015) Synergistic effects of amine and protein modified epoxy-support on immobilized lipase activity. Colloids Surf B Biointerfaces 133:51–57.  https://doi.org/10.1016/j.colsurfb.2015.05.045 Google Scholar
  62. 62.
    Cai Q, Hu C, Yang N, Wang Q, Wang J, Pan H, Hu Y, Ruan C (2018) Enhanced activity and stability of industrial lipases immobilized onto spherelike bacterial cellulose. Int J Biol Macromol 109:1174–1181.  https://doi.org/10.1016/j.ijbiomac.2017.11.100 Google Scholar
  63. 63.
    Gao Z, Chu J, Jiang T, Xu T, Wu B, He B (2018) Lipase immobilization on functionalized mesoporous TiO2: specific adsorption, hyperactivation and application in cinnamyl acetate synthesis. Process Biochem 64:152–159.  https://doi.org/10.1016/j.procbio.2017.09.011 Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Fatima Nehal
    • 1
  • Mouna Sahnoun
    • 2
    Email author
  • Ahlem Dab
    • 2
  • Mohammed Sebaihia
    • 3
  • Samir Bejar
    • 2
  • Bassem Jaouadi
    • 2
  1. 1.Faculty of Nature and Life Science, Department of Agricultural Sciences and BiotechnologiesHassiba Benbouali UniversityChlefAlgeria
  2. 2.Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS)University of SfaxSfaxTunisia
  3. 3.Laboratory of Molecular Biology, Genomics and Bioinformatics, Faculty of Nature and Life ScienceHassiba Benbouali UniversityChlefAlgeria

Personalised recommendations