Antioxidant activities of α-lipoic acid free and nano-capsule inhibit the growth of Ehrlich carcinoma

  • Monira M. RagehEmail author
  • Reem H. El-Gebaly
Original Article


To evaluate the relationship between oxidative stress, DNA damage, and suppression of tumor growth induced by lipoic acid free and nano-capsule. Lipoic acid nano-capsule was assessed by transmission electron microscopy (TEM). The antitumor activity of lipoic acid free and nano-capsule was investigated in Ehrlich solid tumor bearing mice. The endpoints measured were superoxide dismutase (SOD) enzyme activity, malondialdehyde (MDA) levels, DNA damage (comet assay), histopathological examination of tissues and tumor growth volume. Treatment with α-lipoic acid (A-LA) free and nano-capsule (1.2, 2.4 mg/kg) showed a significant depression (67–28%) in MDA levels and elevated (38–98%) in SOD activity. Additionally, A-LA free and nano-capsule caused a 3-10-fold increase in comet parameters such as % tail DNA and suppressed Ehrlich solid tumor growth in mice. In conclusion, the present study revealed that A-LA free and nano-capsule have antitumor activity. This might be possible via its redox activity.


α-Lipoic acid free and nano-capsule Ehrlich tumor Oxidative stress 


Compliance with ethical standards

Conflict of interest

The authors state that there are no conflicts of interest.


  1. 1.
    Kozlov AV, Gille L, Staniek K, Nohl H (1999) Dihydrolipoic acid maintains ubiquinone in the antioxidant active form by two-electron reduction of ubiquinone and one-electron reduction of ubisemiquinone. Arch Biochem Biophys 363:148CrossRefGoogle Scholar
  2. 2.
    Roy SS, Packer L (1998) Redox regulation of cell functions by alpha lipoate: biochemical and molecular aspects. BioFactors 8:17CrossRefGoogle Scholar
  3. 3.
    Novotny L, Rauko P, Cojocel C (2008) Alpha-lipoic acid—the potential for use in cancer therapy. Neoplasma 55:81Google Scholar
  4. 4.
    Korotchkina LG, Sidhu S, Patel MS (2004) Adverse effects of high doses of intravenous alpha lipoic acid on liver mitochondria. Free Radic Res 38:1083CrossRefGoogle Scholar
  5. 5.
    Chiumiento L, Bruschi F (2009) Enzymatic antioxidant systems in helminth parasites. Parasitol Res 105:593CrossRefGoogle Scholar
  6. 6.
    Dal-Pizzol F, Klamt F, Frota ML Jr, Andrades ME, Caregnato FF, Vianna MM, Schröder N, Quevedo J, Izquierdo I, Archer T, Moreira JC (2001) Neonatal iron exposure induces oxidative stress in adult Wistar rat. Brain Res Dev Brain Res 130:109CrossRefGoogle Scholar
  7. 7.
    Gackowski D, Banaszkiewicz Z, Rosalski R, Jawien A, Olinski R (2002) Persistent oxidative stress in colorectal carcinoma patients. Int J Cancer 101:395CrossRefGoogle Scholar
  8. 8.
    Glaab WE, Hill RB, Skopek TR (2001) Suppression of spontaneous and hydrogen peroxide-induced mutagenesis by the antioxidant ascorbate in mismatch repair-deficient human colon cancer cells. Carcinogenesis 22:1709CrossRefGoogle Scholar
  9. 9.
    Forsberg L, de Faire U, Morgenstern R (2001) Oxidative stress, human genetic. Arch Biochem Biophys 389:84CrossRefGoogle Scholar
  10. 10.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7CrossRefGoogle Scholar
  11. 11.
    Ferreira E, da Silva AE, Serakides R, Gomes MG, Cassali GD (2007) Ehrlich tumor as model to study artificial hyperthyroidism influence on breast cancer. Pathol Res Prac 203:39CrossRefGoogle Scholar
  12. 12.
    Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66:1022CrossRefGoogle Scholar
  13. 13.
    Bergfeld SA, Blavier L, DeClerck YA (2014) Bone marrow-derived mesenchymal stromal cells promote survival and drug resistance in tumor cells. Mol Cancer Ther 13:962CrossRefGoogle Scholar
  14. 14.
    Hill GW, Morest DK, Parham K (2008) Cisplatin-induced ototoxicity: effect of intratympanic dexamethasone injections. Otol Neurotol 29:1005CrossRefGoogle Scholar
  15. 15.
    Ashour AE, Abdel-Hamied HE, Korashy HM, Al-Shabanah AO, Abd-Allah ARA (2011) Alpha-lipoic acid rebalances redox and immune-testicular milieu in septic rats. Chem Biol Interact 189:198CrossRefGoogle Scholar
  16. 16.
    Moreira PI, Harris PLR, Zhu X, Santos MS, Oliveira CR, Smith MA, Perry G (2007) Lipoic acid and N-acetyl cysteine decrease mitochondrial-related oxidative stress in Alzheimer disease patient fibroblasts. J Alzheimer’s Dis 12:195CrossRefGoogle Scholar
  17. 17.
    Wenzel U, Nickel A, Daniel H (2005) α-lipoic acid induces apoptosis in human colon cancer cells by increasing mitochondrial respiration with a concomitant O2 -generation. Apoptosis 10:359CrossRefGoogle Scholar
  18. 18.
    Yoo TH, Lee JH, Chun HS, Chi SG (2013) α-lipoic acid prevents p53 degradation in colon cancer cells by blocking NF-κB induction of RPS6KA4. Anticancer Drugs 24:555Google Scholar
  19. 19.
    Jankowska AK, Ponikowska MG, Wozniak MM (2017) Lipoic acid decreases the viability of breast cancer cells and activity of PTP1B and SHP2. Anticancer Res 37:2893Google Scholar
  20. 20.
    Kim JI, Cho SR, Lee CM, Park ES, Kim KN, Kim HC, Lee HY (2012) Induction of ER stress-mediated apoptosis by α-lipoic acid in A549 cell lines. Korean J Thorac Cardiovasc Surg 45:1CrossRefGoogle Scholar
  21. 21.
    Feuerecker B, Pirsig S, Seidl C, Aichler M, Feuchtinger A, Bruchelt G, Senekowitsch-Schmidtke R (2012) Lipoic acid inhibits cell proliferation of tumor cells in vitro and in vivo. Cancer Biol Ther 13:1425CrossRefGoogle Scholar
  22. 22.
    Teichert J, Hermann R, Ruus P, Preiss R (2003) Plasma kinetics, metabolism, and urinary excretion of alpha-lipoic acid following oral administration in healthy volunteers. J Clin Pharmacol 43:1257CrossRefGoogle Scholar
  23. 23.
    Kofuji K, Nakamura M, Isobe T, Murata Y, Kawashima S (2008) Stabilization of α-lipoic acid by complex formation with chitosan. Food Chem 109:167CrossRefGoogle Scholar
  24. 24.
    Souto EB, Müller RH, Gohla S (2005) A novel approach based on lipid nanoparticles (SLN®) for topical delivery of α-lipoic acid. J Microencapsul 22:581CrossRefGoogle Scholar
  25. 25.
    Tiziana MGP, Teresa M, Lucrezia M, Massimo F, Rosario P (2016) Evaluation of Eudragit® retard polymers for the microencapsulation of alpha-lipoic acid. Curr Drug Deliv 13:1165CrossRefGoogle Scholar
  26. 26.
    Vidović BB, Milašinović NZ, Kotur-Stevuljević JM, Dilber SP, Kalagasidis Krušić MT, Dordević BI, Knežević-Jugović ZD (2016) Encapsulation of α-lipoic acid into chitosan and alginate/gelatin hydrogel microparticles and its in vitro antioxidant activity. Hem ind 70:49CrossRefGoogle Scholar
  27. 27.
    Segall A, Sosa M, Alami A, Enero C, Hormaechea F, Pizzorno MT, Bregni C, Serrao R (2004) Stability study of lipoic acid in the presence of vitamins A and E in o/w emulsions for cosmetic application. J Cosmet Sci 55:449Google Scholar
  28. 28.
    Sridharan V, Seawright JW, Antonawich FJ, Garnett M, Cao M, Singh P, Boerma M (2017) Late administration of a palladium lipoic acid complex (POLY-MVA) modifies cardiac mitochondria but not functional or structural manifestations of radiation-induced heart disease in a rat model. Rad Res 187:361CrossRefGoogle Scholar
  29. 29.
    Nishiura H, Sugimoto K, Akiyama K, Musashi M, Kubota Y, Yokoyama Ti, Yamashita Y, Kuriki T, Yamaguchi Y (2013) A novel nano-capsule of lipoic acid as a template of core-shell structure constructed by self-assembly. J Nanomed Nanotechol 4:155Google Scholar
  30. 30.
    National Research Council (1996) Guide for the Care and Use of Laboratory Animals. National Academy Press, Washington, DCGoogle Scholar
  31. 31.
    Food and Drug Administration, Center for Drug Evaluation and Research (CDER) (2005) Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. Pharmacol Toxicol 40:185–206Google Scholar
  32. 32.
    Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184CrossRefGoogle Scholar
  33. 33.
    Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206CrossRefGoogle Scholar
  34. 34.
    Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, Sadritdinova AF, Fedorova MS, Pokrovsky AV, Melnikova NV, Kaprin AD, Moskalev AA, Snezhkina AV (2016) Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget 7:44879Google Scholar
  35. 35.
    Sinclair AJ, Barnett AH, Lunec J (1990) Free radicals and antioxidant systems in health and disease. Br J Hosp Med 43:334Google Scholar
  36. 36.
    Ahmed MI, Fayed ST, Hossein H, Tash FM (1999) Lipid peroxidation and antioxidant status in human cervical carcinoma. Dis Markers 15:283CrossRefGoogle Scholar
  37. 37.
    Saad EA, Hassanien MM, El-lban FW (2017) Nickel (II) diacetyl monoxime-2-pyridyl hydrazone complex can inhibit Ehrlich solid tumor growth in mice: a potential new antitumor drug. Biochem Biophys Res Commun 484:579CrossRefGoogle Scholar
  38. 38.
    Patra S, Muthuraman MS, Prabhu ATJ, Priyadharshini RR, Parthiban S (2015) Evaluation of antitumor and antioxidant activity of Sargassum tenerrimum against Ehrlich ascites carcinoma in mice. APJCP 16:915Google Scholar
  39. 39.
    Michiels C, Raes M, Toussaint O, Remacle J (1994) Importance of SE-glutathione peroxidase, catalase, and CU/ZN-SOD for cell survival against oxidative stress. Free Radic Biol Med 17:235CrossRefGoogle Scholar
  40. 40.
    Castro LSEPW, Kviecinski MR, Ourique F, Parisotto EB, Grinevicius VMAS, Correia JFG, Wilhelm Filho D, Pedrosa RC (2016) Albendazole as a promising molecule for tumor control. Redox Biol 10:90CrossRefGoogle Scholar
  41. 41.
    Moller P, Knudsen LE, Loft S, Wallin H (2000) The comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors. Cancer Epidemiol Biomarkers Prev 9:1005Google Scholar
  42. 42.
    Georgieva E, Ivanova D, Zhelev Z, Bakalova R, Gulubova M, Aoki I (2017) Mitochondrial dysfunction and redox imbalance as a diagnostic marker of “free radical diseases”. Anticancer Res 10:5373Google Scholar
  43. 43.
    Kafara P, Icard P, Guillamin M, Schwartz L, Lincet H (2015) Lipoic acid decreases Mcl-1, Bcl-xL and up regulates Bim on ovarian carcinoma cells leading to cell death. J Ovarian Res 8:36CrossRefGoogle Scholar
  44. 44.
    Al Abdan M (2012) Alfa-lipoic acid controls tumor growth and modulates hepatic redox state in Ehrlich-ascites-carcinoma-bearing mice. Sci World J 2012:509838CrossRefGoogle Scholar
  45. 45.
    Rageh MM, El-Gebaly RH, Afifi MM (2018) Antitumor activity of silver nanoparticles in Ehrlich carcinoma-bearing mice. Naunyn-Schmiedeberg’s Arch Pharmacol 391:1421CrossRefGoogle Scholar
  46. 46.
    Michikoshi H, Nakamura T, Sakai K, Suzuki Y, Adachi E, Matsugo S et al (2013) Alpha-lipoic acid-induced inhibition of proliferation and met phosphorylation in human non-small cell lung cancer cells. Cancer Lett 335:472CrossRefGoogle Scholar
  47. 47.
    Schwartz L, Guais A, Israel M, Junod B, Steyaert JM, Crespi E et al (2013) Tumor regression with a combination of drugs interfering with the tumor metabolism: efficacy of hydroxycitrate, lipoic acid and capsaicin. Invest New Drugs 31:256CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biophysics, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations