CRISPR-based genome editing in wheat: a comprehensive review and future prospects

  • Rakesh Kumar
  • Amandeep Kaur
  • Ankita Pandey
  • H. M. MamruthaEmail author
  • G. P. Singh


CRISPR technology has vividly increased its applications in last five years for genome editing in a wide range of organisms from bacteria to plants. It is mostly applied in the field of mammalian research. This emerging versatile tool can be utilized in crop improvement by targeting various traits to increase economic value and adaptability of the crop species under changing climate. In plants, Arabidopsis and rice are the most studied plant species in genome editing through CRISPR technology. Wheat is lagging behind in the utilization of CRISPR based genome modifications. The hexaploid, large genome size and the recalcitrant nature in terms of tissue culture are the major obstacles for CRISPR utilization in wheat. Recently, the IWGSC released the high quality of reference genome for wheat which will greatly accelerate the application of CRISPR-based genome engineering in wheat and helps to resolve the global issue of food security in coming decades. The exogenous DNA-free improved mutants with CRISPR technology having desired traits will increase the productivity under biotic and abiotic stress conditions. To address complex traits involving multigene, recently developed multiplex genome editing toolkits can be used. This is a first review of its kind in which the practical utilization and updates on CRISPR validation in wheat along with its future prospects for use of this technology in wheat improvement are comprehensively discussed. Thus, the compiled information will immensely benefit the researchers for utilization of CRISPR system in wheat improvement across the globe.


CRISPR Wheat SgRNA Cas9 Cpf1 Agrobacterium Biolistic Protoplast Knockout 



The authors sincerely thank the Indian Council of Agricultural Research (ICAR), New Delhi, India for funding this research work under the project entitled “ICAR Network Project on Functional Genomics and Genetic Modification in Crops (NPFGGM)” (Project No. 1006474).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Zhang J, Zhang H, Botella JR, Zhu JK (2018) Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J Integr Plant Biol 60:369–375. CrossRefGoogle Scholar
  2. 2.
    Ali Z, Abul-faraj A, Li L, Ghosh N, Piatek M, Mahjoub A, Aouida M, Piatek A, Baltes NJ, Voytas DF, Dinesh-Kumar S, Mahfouz MM (2015) Efficient Virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol Plant 8:1288–1291. CrossRefGoogle Scholar
  3. 3.
    Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52. CrossRefGoogle Scholar
  4. 4.
    Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405. CrossRefGoogle Scholar
  5. 5.
    Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395–2410. CrossRefGoogle Scholar
  6. 6.
    Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392. CrossRefGoogle Scholar
  7. 7.
    Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41:63–68. CrossRefGoogle Scholar
  8. 8.
    Shan Q, Wang Y, Chen K, Liang Z, Li J, Zhang Y, Zhang K, Liu J, Voytas DF, Zheng X, Zhang Y, Gao C (2013) Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant 6:1365–1368. CrossRefGoogle Scholar
  9. 9.
    Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688. CrossRefGoogle Scholar
  10. 10.
    Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441. CrossRefGoogle Scholar
  11. 11.
    Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445. CrossRefGoogle Scholar
  12. 12.
    Wendt T, Holm PB, Starker CG, Christian M, Voytas DF, Brinch-Pedersen H, Holme IB (2013) TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol 83:279–285. CrossRefGoogle Scholar
  13. 13.
    Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci 107(26):12028–12033. CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161:20–27. CrossRefGoogle Scholar
  15. 15.
    Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951. CrossRefGoogle Scholar
  16. 16.
    Abdallah NA, Prakash CS, McHughen AG (2015) Genome editing for crop improvement: challenges and opportunities. GM Crops Food 6:183–205. CrossRefGoogle Scholar
  17. 17.
    Jones HD (2015) Regulatory uncertainty over genome editing. Nat Plants 1:14011. CrossRefGoogle Scholar
  18. 18.
    Xiong JS, Ding J, Li Y (2015) Genome-editing technologies and their potential application in horticultural crop breeding. Hortic Res 2:15019. CrossRefGoogle Scholar
  19. 19.
    Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda) 3:2233–2238. CrossRefGoogle Scholar
  20. 20.
    Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170. CrossRefGoogle Scholar
  21. 21.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. CrossRefGoogle Scholar
  22. 22.
    Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355. CrossRefGoogle Scholar
  23. 23.
    Char SN, Neelakandan AK, Nahampun H, Frame B, Main M, Spalding MH, Becraft PW, Meyers BC, Walbot V, Wang K, Yang B (2017) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol 15:257–268. CrossRefGoogle Scholar
  24. 24.
    Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L (2016) Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9:628–631. CrossRefGoogle Scholar
  25. 25.
    Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945. CrossRefGoogle Scholar
  26. 26.
    Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, Aryee MJ, Joung JK (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523(7561):481–485. CrossRefGoogle Scholar
  27. 27.
    Anders C, Bargsten K, Jinek M (2016) Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9. Mol Cell 61:895–902. CrossRefGoogle Scholar
  28. 28.
    Lee CM, Cradick TJ, Bao G (2016) The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol Ther 24(3):645–654. CrossRefGoogle Scholar
  29. 29.
    Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186–191. CrossRefGoogle Scholar
  30. 30.
    Kim E, Koo T, Park SW, Kim D, Kim K, Cho HY, Song DW, Lee KJ, Jung MH, Kim S, Kim JH, Kim JH, Kim JS (2017) In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 8:14500. CrossRefGoogle Scholar
  31. 31.
    Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10:1116–1121. CrossRefGoogle Scholar
  32. 32.
    Zetsche B, Strecker J, Abudayyeh OO, Gootenberg JS, Scott DA, Zhang F (2017) A survey of genome editing activity for 16 Cpf1 orthologs. bioRxiv. 134015.
  33. 33.
    Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, Zhang F, Koonin EV (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60(3):385–397. CrossRefGoogle Scholar
  34. 34.
    Gao F, Shen XZ, Jiang F, Wu Y, Han C (2016) DNA-guided genome editing using the Natronobacterium gregoryi argonaute. Nat Biotechnol 34:768–773. CrossRefGoogle Scholar
  35. 35.
    Bhowmik P, Ellison E, Polley B, Bollina V, Kulkarni M, Ghanbarnia K, Song H, Gao C, Voytas DF, Kagale S (2018) Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Sci Rep 8:6502. CrossRefGoogle Scholar
  36. 36.
    Kumar R, Mamrutha HM, Kaur A, Venkatesh K, Grewal A, Kumar R, Tiwari V (2017) Development of an efficient and reproducible regeneration system in wheat (Triticum aestivum L.). Physiol Mol Biol Plants 23:945–954. CrossRefGoogle Scholar
  37. 37.
    Liang Z, Chen K, Zhang Y, Liu J, Yin K, Qiu JL, Gao C (2018) Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat Protoc 13:413–430. CrossRefGoogle Scholar
  38. 38.
    Cermák T, Curtin SJ, Gil-Humanes J, Cegan R, Kono TJY, Konečná E, Belanto JJ, Starker CG, Mathre JW, Greenstein RL, Voytas DF (2017) A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29(6):1196–1217. Google Scholar
  39. 39.
    Puchta H (2017) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin Plant Biol 36:1–8. CrossRefGoogle Scholar
  40. 40.
    Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. CrossRefGoogle Scholar
  41. 41.
    Arora L, Narula A (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci 8:1932. Google Scholar
  42. 42.
    Ma X, Zhu Q, Chen Y, Liu YG (2016) CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9(7):961–974. CrossRefGoogle Scholar
  43. 43.
    Khatodia S, Bhatotia K, Passricha N, Khurana SM, Tuteja N (2016) The CRISPR/Cas genome-editing tool: application in improvement of crops. Front Plant Sci 7:506. CrossRefGoogle Scholar
  44. 44.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. CrossRefGoogle Scholar
  45. 45.
    Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183. CrossRefGoogle Scholar
  46. 46.
    Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu JL, Wang D, Gao C (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35:438–440. CrossRefGoogle Scholar
  47. 47.
    Nakade S, Yamamoto T, Sakuma T (2017) Cas9, Cpf1 and C2c1/2/3¡What’s next? Bioengineered 3:265–273. CrossRefGoogle Scholar
  48. 48.
    Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771. CrossRefGoogle Scholar
  49. 49.
    Wang M, Wang S, Liang Z, Shi W, Gao C, Xia G (2018) From Genetic stock to genome editing: gene exploitation in wheat. Trends Biotechnol 36(2):160–172. CrossRefGoogle Scholar
  50. 50.
    Sánchez-León S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voytas DF, Barro F (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16:902–910. CrossRefGoogle Scholar
  51. 51.
    Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607. CrossRefGoogle Scholar
  52. 52.
    Mojica FJ, Díez-Villaseñor C, García-Martínez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiol 155:733–740. CrossRefGoogle Scholar
  53. 53.
    Zhang T, Gao Y, Wang R, Zhao Y (2017) Production of guide RNAs in vitro and in vivo for CRISPR using ribozymes and RNA polymerase II promoters. Bio Protoc 7:e2148. Google Scholar
  54. 54.
    Mamrutha HM, Kumar R, Venkatesh K, Sharma P, Kumar R, Tiwari V, Sharma I (2014) Genetic transformation of wheat –Present status and future potential. J Wheat Res 6:1–13Google Scholar
  55. 55.
    Kumar R, Mamrutha HM, Kaur A, Venkatesh K, Sharma D, Singh GP (2018) Optimization of Agrobacterium-mediated transformation system in spring bread wheat using mature and immature embryos. Mol Biol Rep. Google Scholar
  56. 56.
    Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261. CrossRefGoogle Scholar
  57. 57.
    Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7(9):1494–1496. CrossRefGoogle Scholar
  58. 58.
    Xie K, Zhang J, Yang Y (2014) Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol Plant 7(5):923–926. CrossRefGoogle Scholar
  59. 59.
    International Wheat Genome Sequencing Consortium (2014) A chromsome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788. CrossRefGoogle Scholar
  60. 60.
    International Wheat Genome Sequencing Consortium (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191. CrossRefGoogle Scholar
  61. 61.
    Kumar R, Kaur A, Mamrutha HM, Sharma P (2014) Wheat genome sequence applications. applications-3281.html. Accessed 16 July 2018
  62. 62.
    Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu JL, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617. CrossRefGoogle Scholar
  63. 63.
    Brandt KM, Gunn HM, Buschke BL, Heesacker A, Moretti N, Karasev A, Zemetra RS (2017) Testing non-transgenic CRISPR technology for wheat improvement. Presentation. 13th IWGS –Tulln, Austria, April 28, 2017Google Scholar
  64. 64.
    Cui X (2017) Targeted gene editing using CRISPR/Cas9 in a wheat protoplast system. Ph.D Thesis, University of Ottawa. Xiucheng Cui, Ottawa, CanadaGoogle Scholar
  65. 65.
    Kim D, Alptekin B, Budak H (2017) CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics 18:31–34. CrossRefGoogle Scholar
  66. 66.
    Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D (2017) Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91(4):714–724. CrossRefGoogle Scholar
  67. 67.
    Wang W, Pan Q, He F, Akhunova A, Chao S, Trick H, Akhunov E (2018) Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J 1(1):65–74. CrossRefGoogle Scholar
  68. 68.
    Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, Sánchez-León S, Baltes NJ, Starker C, Barro F, Gao C, Voytas DF (2017) High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89(6):1251–1262. CrossRefGoogle Scholar
  69. 69.
    Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, He H, Wang W, Zeng X, Shao Y, Pan Y, Hu Y, Peng Y, Fu X, Li H, Xia S, Zhao B (2017) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7:14438. CrossRefGoogle Scholar
  70. 70.
    Li X, Zhou W, Ren Y, Tian X, Lv T, Wang Z, Fang J, Chu C, Yang J, Bu Q (2017) High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. J Genet Genomics 44:175–178. CrossRefGoogle Scholar
  71. 71.
    Li M, Li X, Zhou Z, Wu P, Fang M, Pan X, Lin Q, Luo W, Wu G, Li H (2016) Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci 7:377. Google Scholar
  72. 72.
    Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87(1–2):99–110. CrossRefGoogle Scholar
  73. 73.
    Miao C, Xiao L, Hua K, Zoua C, Zhao Y, Bressan RA, Zhu JK (2018) Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc Natl Acad Sci USA 115:6058–6063. CrossRefGoogle Scholar
  74. 74.
    Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23(10):1233–1236. CrossRefGoogle Scholar
  75. 75.
    Xu R, Yang Y, Qin R, Li H, Qiu C, Li L, Wei P, Yang J (2016) Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J Genet Genomics 43:529–532. CrossRefGoogle Scholar
  76. 76.
    Lu Y, Zhu JK (2017) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10:523–525. CrossRefGoogle Scholar
  77. 77.
    Yin X, Biswal AK, Dionora J, Perdigon KM, Balahadia CP, Mazumdar S, Chater C, Lin HC, Coe RA, Kretzschmar T, Gray JE, Quick PW, Bandyopadhyay A (2017) CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Rep 36(5):745–757. CrossRefGoogle Scholar
  78. 78.
    Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J (2014) Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice (N Y) 7(1):5. CrossRefGoogle Scholar
  79. 79.
    Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Li J, Gao C (2016) Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat Plants 2:16139. CrossRefGoogle Scholar
  80. 80.
    Xu RF, Li H, Qin RY, Li J, Qiu CH, Yang YC, Ma H, Li L, Wei PC, Yang JB (2015) Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep 5:11491. CrossRefGoogle Scholar
  81. 81.
    Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R, Shinozaki K, Osakabe K (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6:26685. CrossRefGoogle Scholar
  82. 82.
    Wang L, Chen L, Li R, Zhao R, Yang M, Sheng J, Shen L (2017) Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J Agric Food Chem 65(39):8674–8682. CrossRefGoogle Scholar
  83. 83.
    Zhao Y, Zhang C, Liu W, Gao W, Liu C, Song G, Li WX, Mao L, Chen B, Xu Y, Li X, Xie C (2016) An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep 6:23890. CrossRefGoogle Scholar
  84. 84.
    Lou D, Wang H, Liang G, Yu D (2017) OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci 8:993. CrossRefGoogle Scholar
  85. 85.
    Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15(2):207–216. CrossRefGoogle Scholar
  86. 86.
    Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.ICAR- Indian Institute of Wheat and Barley Research (IIWBR)KarnalIndia
  2. 2.Biosciences and BiotechnologyBanasthali VidyapithJaipurIndia

Personalised recommendations