Advertisement

Molecular Biology Reports

, Volume 46, Issue 3, pp 3073–3081 | Cite as

Roles of SP600125 in expression of JNK, RANKL and OPG in cultured dental follicle cells

  • Qi Wang
  • Xiaojuan Yuan
  • Boqi Li
  • Dalei Sun
  • Jia Liu
  • Tao Liu
  • Xiaojuan Bi
  • Yishan LiuEmail author
Original Article
  • 47 Downloads

Abstract

Objective

To investigate the expression of C-JNK, RANKL and OPG after SP600125 administration in cultured dental follicle cells (DFCs).

Methods

TRAP staining and electron microscope were carried out on day 7 and 9 after coculture of BMMs and DFCs with a ratio of 5:1 in different groups. To determine the effects of SP600125 on the expression of C-JNK, RANKL and OPG mRNA and protein, cultured DFCs were divided into control group, DMSO group and SP600125 groups. Real-time PCR and Western blot analysis were performed to investigate the expression of the mRNA and protein, respectively.

Results

TRAP assay indicated that the number of multinucleated osteoclasts in the SP600125 group showed significant decrease compared with that of control (P < 0.05). The expression of JNK protein in the SP600125 groups showed significant decline compared with that of the control group and blank control (P < 0.05). Significant decrease was noticed in the RANKL protein expression with the elevation of SP600125.

Conclusions

SP600125 could inhibit the formation of osteoclast in the coculture system of DFCs and BMMs. After SP600125 treatment, the expression of RANKL and JNK showed a trend of decrease, and the expression of OPG showed gradual increase followed by gradual decrease.

Keywords

JNK RANKL/OPG SP600125 Dental follicle cells Osteoclast 

Notes

Funding

This work is supported by the National Natural Science Foundation of China [Grant No. 81560178].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Guttal KS, Naikmasur VG, Bhargava P, Bathi RJ (2010) Frequency of developmental dental anomalies in the Indian population. Eur J Dent 4(3):263–269Google Scholar
  2. 2.
    Gozes I, Van Dijck A, Hacohen-Kleiman G, Grigg I, Karmon G, Giladi E, Eger M, Gabet Y, Pasmanik-Chor M, Cappuyns E, Elpeleg O, Kooy RF, Bedrosian-Sermone S (2017) Premature primary tooth eruption in cognitive/motor-delayed ADNP-mutated children. Transl Psychiatry 7(2):e1043.  https://doi.org/10.1038/tp.2017.27 CrossRefGoogle Scholar
  3. 3.
    Proffit WR, Vig KW (1981) Primary failure of eruption: a possible cause of posterior open-bite. Am J Orthod 80(2):173–190CrossRefGoogle Scholar
  4. 4.
    Stellzig-Eisenhauer A, Decker E, Meyer-Marcotty P, Rau C, Fiebig BS, Kress W, Saar K, Ruschendorf F, Hubner N, Grimm T, Witt E, Weber BH (2010) Primary failure of eruption (PFE)-clinical and molecular genetics analysis. J Orofacial Orthoped 71(1):6–16.  https://doi.org/10.1007/s00056-010-0908-9 CrossRefGoogle Scholar
  5. 5.
    Frazier-Bowers SA, Koehler KE, Ackerman JL, Proffit WR (2007) Primary failure of eruption: further characterization of a rare eruption disorder. Am J Orthod Dentofacial Orthoped 131 (5):578.e571-511.  https://doi.org/10.1016/j.ajodo.2006.09.038 CrossRefGoogle Scholar
  6. 6.
    Guo W, Gong K, Shi H, Zhu G, He Y, Ding B, Wen L, Jin Y (2012) Dental follicle cells and treated dentin matrix scaffold for tissue engineering the tooth root. Biomaterials 33(5):1291–1302.  https://doi.org/10.1016/j.biomaterials.2011.09.068 CrossRefGoogle Scholar
  7. 7.
    Cannon JG, Kraj B, Sloan G (2011) Follicle-stimulating hormone promotes RANK expression on human monocytes. Cytokine 53(2):141–144.  https://doi.org/10.1016/j.cyto.2010.11.011 CrossRefGoogle Scholar
  8. 8.
    Zauli G, Rimondi E, Nicolin V, Melloni E, Celeghini C, Secchiero P (2004) TNF-related apoptosis-inducing ligand (TRAIL) blocks osteoclastic differentiation induced by RANKL plus M-CSF. Blood 104(7):2044–2050.  https://doi.org/10.1182/blood-2004-03-1196 CrossRefGoogle Scholar
  9. 9.
    Page G, Miossec P (2005) RANK and RANKL expression as markers of dendritic cell-T cell interactions in paired samples of rheumatoid synovium and lymph nodes. Arthritis Rheum 52(8):2307–2312.  https://doi.org/10.1002/art.21211 CrossRefGoogle Scholar
  10. 10.
    Kostenuik PJ (2005) Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength. Curr Opin Pharmacol 5(6):618–625.  https://doi.org/10.1016/j.coph.2005.06.005 CrossRefGoogle Scholar
  11. 11.
    Fretz JA, Shevde NK, Singh S, Darnay BG, Pike JW (2008) Receptor activator of nuclear factor-kappaB ligand-induced nuclear factor of activated T cells (C1) autoregulates its own expression in osteoclasts and mediates the up-regulation of tartrate-resistant acid phosphatase. Mol Endocrinol 22(3):737–750.  https://doi.org/10.1210/me.2007-0333 CrossRefGoogle Scholar
  12. 12.
    Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410(6824):37–40.  https://doi.org/10.1038/35065000 CrossRefGoogle Scholar
  13. 13.
    Gomez-Santos C, Ferrer I, Santidrian AF, Barrachina M, Gil J, Ambrosio S (2003) Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SY5Y cells. J Neurosci Res 73(3):341–350.  https://doi.org/10.1002/jnr.10663 CrossRefGoogle Scholar
  14. 14.
    Wang HT, Wang CQ (2015) [27-O-(E)-p-coumaric acyl ursolic acid via JNK/SAPK signal pathway regulates apoptosis of human breast cancer MDA-MB-231 cell line. J Chin Mater Med 40(4):722–726Google Scholar
  15. 15.
    Qin F, Zhang Z (2015) Progress in studies on JNK signaling pathway and autophagy. J Centr South Univ Med Sci 40 (9):1035–1038.  https://doi.org/10.11817/j.issn.1672-7347.2015.09.015 Google Scholar
  16. 16.
    Wise GE, Lin F, Fan W (1992) Culture and characterization of dental follicle cells from rat molars. Cell Tissue Res 267(3):483–492CrossRefGoogle Scholar
  17. 17.
    Deepak S, Kottapalli K, Rakwal R et al (2007) Real-Time PCR: Revolutionizing detection and expression analysis of genes. Curr Genomics 8(4):234–251CrossRefGoogle Scholar
  18. 18.
    Suzuki O, Koura M, Noguchi Y et al (2011) Use of sample mixtures for standard curve creation in quantitative Western Blots. Exp Anim 60 (2):193–196Google Scholar
  19. 19.
    Shuai Y, Ma Y, Guo T, Zhang L, Yang R, Qi M, Liu W, Jin Y (2018) Dental stem cells and tooth regeneration. Adv Exp Med Biol.  https://doi.org/10.1007/5584_2018_252 Google Scholar
  20. 20.
    Que BG, Wise GE (1997) Colony-stimulating factor-1 and monocyte chemotactic protein-1 chemotaxis for monocytes in the rat dental follicle. Arch Oral Biol 42(12):855–860CrossRefGoogle Scholar
  21. 21.
    Fukushima H, Jimi E, Kajiya H, Motokawa W, Okabe K (2005) Parathyroid-hormone-related protein induces expression of receptor activator of NF-{kappa}B ligand in human periodontal ligament cells via a cAMP/protein kinase A-independent pathway. J Dent Res 84(4):329–334.  https://doi.org/10.1177/154405910508400407 CrossRefGoogle Scholar
  22. 22.
    Liu D, Yao S, Pan F, Wise GE (2005) Chronology and regulation of gene expression of RANKL in the rat dental follicle. Eur J Oral Sci 113(5):404–409.  https://doi.org/10.1111/j.1600-0722.2005.00245.x CrossRefGoogle Scholar
  23. 23.
    Chen YJ, Liu WH, Kao PH, Wang JJ, Chang LS (2010) Involvement of p38 MAPK- and JNK-modulated expression of Bcl-2 and Bax in Naja nigricollis CMS-9-induced apoptosis of human leukemia K562 cells. Toxicon 55(7):1306–1316.  https://doi.org/10.1016/j.toxicon.2010.01.024 CrossRefGoogle Scholar
  24. 24.
    Aminzadeh A (2017) Protective effect of tropisetron on high glucose induced apoptosis and oxidative stress in PC12 cells: roles of JNK, P38 MAPKs, and mitochondria pathway. Metab Brain Dis 32(3):819–826.  https://doi.org/10.1007/s11011-017-9976-5 CrossRefGoogle Scholar
  25. 25.
    Sun H, Li Q, Zhang Y, Bi Y, Li X, Shu Y, Chen X, Jin Z, Ge C (2015) Regulation of OPG and RANKL expressed by human dental follicle cells in osteoclastogenesis. Cell Tissue Res 362(2):399–405.  https://doi.org/10.1007/s00441-015-2214-8 CrossRefGoogle Scholar
  26. 26.
    Wise GE, Ding D, Yao S (2004) Regulation of secretion of osteoprotegerin in rat dental follicle cells. Eur J Oral Sci 112(5):439–444.  https://doi.org/10.1111/j.1600-0722.2004.00156.x CrossRefGoogle Scholar
  27. 27.
    Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, Koshida I, Suzuki K, Yamada G, Schwabe GC, Mundlos S, Shibuya H, Takada S, Minami Y (2003) The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 8(7):645–654CrossRefGoogle Scholar
  28. 28.
    Maeda K, Kobayashi Y, Udagawa N, Uehara S, Ishihara A, Mizoguchi T, Kikuchi Y, Takada I, Kato S, Kani S, Nishita M, Marumo K, Martin TJ, Minami Y, Takahashi N (2012) Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat Med 18(3):405–412.  https://doi.org/10.1038/nm.2653 CrossRefGoogle Scholar
  29. 29.
    Kang YK, Zhang MC (2014) IL-23 promotes osteoclastogenesis in osteoblast-osteoclast co-culture system. Genet Mol Res 13(2):4673–4679.  https://doi.org/10.4238/2014.June.18.10 CrossRefGoogle Scholar
  30. 30.
    Guan QH, Pei DS, Liu XM, Wang XT, Xu TL, Zhang GY (2006) Neuroprotection against ischemic brain injury by SP600125 via suppressing the extrinsic and intrinsic pathways of apoptosis. Brain Res 1092(1):36–46.  https://doi.org/10.1016/j.brainres.2006.03.086 CrossRefGoogle Scholar
  31. 31.
    Hayman AR (2008) Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy. Autoimmunity 41(3):218–223.  https://doi.org/10.1080/08916930701694667 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Qi Wang
    • 1
  • Xiaojuan Yuan
    • 1
  • Boqi Li
    • 1
  • Dalei Sun
    • 1
  • Jia Liu
    • 1
  • Tao Liu
    • 2
    • 3
  • Xiaojuan Bi
    • 2
    • 3
  • Yishan Liu
    • 1
    Email author
  1. 1.Department of Pediatric DentistryFirst Affiliated Hospital of Xinjiang Medical UniversityUrumqiPeople’s Republic of China
  2. 2.Clinical Medical Research InstituteFirst Affiliated Hospital of Xinjiang Medical UniversityUrumqiPeople’s Republic of China
  3. 3.State Key Lab Incubation Base of Xinjiang Major Diseases Research, Xinjiang Uygur Autonomous RegionFirst Affiliated Hospital of Xinjiang Medical UniversityUrumqiPeople’s Republic of China

Personalised recommendations