Advertisement

Marine macroalga Caulerpa: role of its metabolites in modulating cancer signaling

  • Richa Mehra
  • Satej Bhushan
  • Felix Bast
  • Sandeep SinghEmail author
Review

Abstract

Cancer, the leading causes of death worldwide, causes multiple metabolic and physiological alterations, leading to an unregulated proliferation of cells. The existing anticancer therapies are usually nonspecific with side effects and or are extremely expensive, thus hunt for better therapeutics is still on, specially efforts are made to look for naturally occurring molecules. Sea harbors several organisms which are unexplored for their biological potentials. Green macroalga genus, Caulerpa, is one such invaluable repository of bioactive metabolites like alkaloids, terpenoids, flavonoids, steroids and tannins with reported bioactivities against many diseases including cancer. Anti-cancerous metabolites of Caulerpa like caulerpenyne (Cyn), caulerpin, caulersin, and racemosin C, possess unique structural moieties and are known to exhibit distinct effects on cancer cells. Theses metabolites are reported to affect microtubule dynamics, unfolded protein response, mitochondrial health, cell cycle progression, metabolic and stress pathways by their cross-talk with signalling proteins like AMPK, GRP78, GADD153, Bid, Bax, AIF, Bcl2, P21, cyclin D, cyclin E, caspase 9, and PTP1B. Targeting of multiple cancer hallmarks by Caulerpa metabolites, with concomitant modulations of multiple signalling cascades, displays its multifactorial approach against cancer. Evaluation of anti-cancer properties of this genus is particularly important as Caulerpa species are widely edible and utilized in several delicacies in the coastal countries. This is the first review article providing a consolidated information about the role of Caulerpa in cancer with major contributing metabolites and plausible modulations in cancer signaling and prospects.

Keywords

Cancer Caulerpa Caulerpenyne Secondary metabolites Marine algae Anti-cancer 

Abbreviations

Cyn

Caulerpenyne

MXR

Multixenobiotic resistance

ER

Enodplasmic reticulum

UPR

Unfolded protein response

MAPs

Microtubule associated proteins

Notes

Acknowledgements

RM acknowledges Indian Council of Medical Research (ICMR) for providing financial assistance in terms of Junior Research Fellowship (JRF). SB acknowledges Ministry of Earth Sciences-Drugs from Sea Programme (MoES-DFS), India for financial assistance as JRF. FB acknowledges Department of Science and Technology (DST-INSPIRE), India, and MoES-DFS for research grants. SS acknowledges DST-SERB extra mural grant for financial assistance. All authors duly acknowledge Central University of Punjab, Bathinda.

Author contributions

RM and SB contributed equally for the preparation of this manuscript. FB contributed in proofreading and polishing of the manuscript. SS coordinated the work and compiled the manuscript.

Compliance with ethical standards

Conflict of interest

Richa Mehra declares that she has no conflict of interest. Satej Bhushan declares that he has no conflict of interest. Felix Bast declares that he has no conflict of interest. Sandeep Singh declares that he has no conflict of interest.

Ethical approval

This article doesn’t contain any studies with human participants or animal models performed by any of the authors.

Informed consent

This study didn’t require any formal consent.

References

  1. 1.
    Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Micro Biotechnol 4(6):687–699Google Scholar
  2. 2.
    Gill BS, Mehra R, Navgeet S (2018) Vitex negundo and its medicinal value. Mol Bio Rep.  https://doi.org/10.1007/s11033-018-4421-3 Google Scholar
  3. 3.
    Mehra R, Gill BS, Kumar V, Kumar S (2017) Ganoderic acid, lanosteroid triterpenoid: a key player in apoptosis. Invest New Drugs 36(1):136–143Google Scholar
  4. 4.
    Andersen RJ (2017) Sponging off nature for new drug leads. Biochem Pharmacol 139:3–14Google Scholar
  5. 5.
    Guiry MD, Guiry GM (2019) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. Accessed 8 Feb 2019
  6. 6.
    Bhushan S, Mehra R, Rani P, Bast F (2016) DbIndAlgae: online resource of Seaweeds of Indian coasts. Curr Sci 111:717–723Google Scholar
  7. 7.
    Robledo D, Pelegrin YF (1997) Chemical and mineral composition of six potentially edible seaweed species of Yucatan. Bot Mar 40:301–306Google Scholar
  8. 8.
    De Gaillande C, Payri C, Remoissenet G, Zubia M (2017) Caulerpa consumption, nutritional value and farming in the Indo-Pacific region. J Appl Phycol 29:249–2266Google Scholar
  9. 9.
    Walters LJ, Brown KR, Stam WT, Olsen JL (2006) E-commerce and Caulerpa: unregulated dispersal of invasive species. Front Ecol Environ 4(2):75–79Google Scholar
  10. 10.
    Montefalcone M, Morri C, Parravicini V, Bianchi CN (2015) A tale of two invaders: divergent spreading kinetics of the alien green algae Caulerpa taxifolia and Caulerpa cylindracea. Biol Invasions 17(9):2717–2728Google Scholar
  11. 11.
    Paul VJ, Fenical W (1986) Chemical defense in tropical green algae, order Caulerpales. Mar Ecol Prog Series 34:157–169Google Scholar
  12. 12.
    Lin HC, Chou ST, Chuang MY, Liao TY, Tsai WS, Chiu TH (2012) The effects of Caulerpa microphysa enzyme-digested extracts on ACE-inhibitory activity and in vitro anti-tumour properties. Food Chem 134:2235–2241Google Scholar
  13. 13.
    Nagappan T, Vairappan CS (2014) Nutritional and bioactive properties of three edible species of green algae, genus Caulerpa (Caulerpaceae). J Appl Phycol 26:1019–1027Google Scholar
  14. 14.
    Montaser R, Luesch H (2011) Marine natural products: a new wave of drugs? Future 3(12):1475–1489Google Scholar
  15. 15.
    Higa T, Kuniyoshi M (2000) Toxins associated with medicinal and edible seaweeds. J Toxicol Toxin Rev 19(2):119–137Google Scholar
  16. 16.
    Gavagnin M, Marin A, Castelluccio F, Villani G, Cimino G (1994) Defensive relationships between Caulerpa prolifera and its shelled sacoglossan predators. J Exp Mar Biol Ecol 175:197–210Google Scholar
  17. 17.
    Sfecci E, Le Quemener C, Lacour T, Massi L, Amade P, Audo G, Mehiri M (2017) Caulerpenyne from Caulerpa taxifolia: a comparative study between CPC and classical chromatographic techniques. Phytochem Lett 20:406–409Google Scholar
  18. 18.
    Sun Y, Gong G, Guo Y, Wang Z, Song S, Zhu B, Zhao L, Jiang J (2018) Purification, structural features and immunostimulatory activity of novel polysaccharides from Caulerpa lentillifera. Int J Biol Macromol 108:314–323Google Scholar
  19. 19.
    Box Centeno A, Sureda A, Tauler P, Terrados J, Marbà N, Pons A (2010) Seasonality of caulerpenyne content in native Caulerpa prolifera and invasive C. taxifolia and C. racemosa var. cylindracea in the western Mediterranean Sea. Bot Mar 53(4):367–375Google Scholar
  20. 20.
    Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 47(D1):D1102–D1109Google Scholar
  21. 21.
    Yang H, Liu DQ, Liang TJ, Li J, Liu AH, Yang P, Lin K, Yu XQ, Guo YW, Mao SC, Wang B (2014) Racemosin C, a novel minor bisindole alkaloid with protein tyrosine phosphatase-1B inhibitory activity from the green alga Caulerpa racemosa. J Asian Nat Prod Res 16:1158–1165Google Scholar
  22. 22.
    Aguilar-Santos G (1970) Caulerpin, a new red pigment from green algae of the genus Caulerpa. J Chem Soc C 6:842–3Google Scholar
  23. 23.
    Maiti BC, Thomson RH (1977) Caulerpin. In: Marine natural products chemistry. Springer, Boston, pp 159–163Google Scholar
  24. 24.
    Li H, Liao X, Sun Y, Zhou R, Long W, Li L, Gu L, Xu S (2018) An economical synthesis of caulerpin and evaluation of its new anticancer activities. Chem Select 3(44):12406–12409Google Scholar
  25. 25.
    Santos G, Doty MS (1974) Constituents of the green alga Caulerpa lamourouxii. Lloydia 34(1):88Google Scholar
  26. 26.
    Vest SE, Dawes CJ, Romeo JT (1983) Distribution of caulerpin and caulerpicin in eight species of the green alga Caulerpa (Caulerpales). Bot Mar 26:313–316Google Scholar
  27. 27.
    Güven KC, Percot A, Sezik E (2010) Alkaloids in marine algae. Mar Drugs 8:269–284Google Scholar
  28. 28.
    Capon RJ, Ghisalberti EL, Jefferies PR (1983) Metabolites of the green algae, Caulerpa species. Phytochem 22:1465–1467Google Scholar
  29. 29.
    Murugan K, Iyer VV (2013) Differential growth inhibition of cancer cell lines and antioxidant activity of extracts of red, brown, and green marine algae. In Vitro Cell Dev Biol-Animal 49:324–334Google Scholar
  30. 30.
    Macedo NRPV, Ribeiro MS, Villaca RC, Ferreira W, Pinto AM, Teixeira VL, Cirne-Santos C, Paixao IC, Giongo V (2012) Caulerpin as a potential antiviral drug against herpes simplex virus type 1. Rev Bras Farmacogn 22:861–867Google Scholar
  31. 31.
    Vairappan CS (2004) Antibacterial activity of major secondary metabolites found in four species of edible green macroalgae genus Caulerpa. Asian J Microbiol Biotechnol Environ Sci 6:197–201Google Scholar
  32. 32.
    De Souza ET, Pereira de Lira D, Cavalcanti de Queiroz A, de Auino A, Campessato Mella EA, Prates Lorenzo V, De Miranda GE, De Araujo-Junior JX, De Oliveira Chaves MC, Barbosa-Filho JM (2009) The antinociceptive and anti-inflammatory activities of caulerpin, a bisindole alkaloid isolated from seaweeds of the genus Caulerpa. Mar Drugs 7:689–704Google Scholar
  33. 33.
    Schröder HC, Badria FA, Ayyad SN, Batel R, Wiens M, Hassanein HM, Kurelec B, Muller WE (1998) Inhibitory effects of extracts from the marine alga Caulerpa taxifolia and of toxin from Caulerpa racemosa on multixenobiotic resistance in the marine sponge Geodia cydonium. Environ Toxicol Pharmacol 5:119–126Google Scholar
  34. 34.
    Raub MF, Cardellina JH, Schwede JG (1987) The green algal pigment caulerpin as a plant growth regulator. Phytochem 26:619–620Google Scholar
  35. 35.
    Mao SC, Guo YW, Shen X (2006) Two novel aromatic valerenane-type sesquiterpenes from the Chinese green alga Caulerpa taxifolia. Bioorg Med Chem Lett 16:2947–2950Google Scholar
  36. 36.
    Su JY, Zhu Y, Zeng LM, Xu XH (1997) A new bisindole from alga Caulerpa serrulata. J Nat Prod 60:1043–1044Google Scholar
  37. 37.
    Bergman J (2013) Synthesis and studies of two marine indole alkaloids, barettin and caulersin. Phytochem Rev 12:487–494Google Scholar
  38. 38.
    Wahlström L, Stensland B, Bergman J (2004) Synthesis of the marine alkaloid caulersin. Tetrahedron 60:2147–2153Google Scholar
  39. 39.
    Feldhammer M, Uetani N, Miranda-Saavedra D, Tremblay ML (2013) PTP1B: a simple enzyme for a complex world. Crit Rev Biochem Mol Biol 48:430–445Google Scholar
  40. 40.
    Amico V, Piattelli M, Tringali C, Fattorusso E, Magno S, Mayol L (1978) Caulerpenyne, an unusual sequiterpenoid from the green alga Caulerpa prolifera. Tetrahedron Lett 19:3593–3596Google Scholar
  41. 41.
    Dumay O, Pergent G, Pergent-Martini C, Amade P (2002) Variations in caulerpenyne contents in Caulerpa taxifolia and Caulerpa racemosa. J Chem Ecol 28:343–352Google Scholar
  42. 42.
    Kandemir-Cavas C, Cavas L, Yokes MB, Hlynka M, Schell R, Yuradoc K (2008) A novel application of queueing theory on the Caulerpenyne secreted by invasive Caulerpa taxifolia (Vahl) C. Agardh (Ulvophyceae, Caulerpales): a preliminary study. Mediterr Mar Sci 9:67–76Google Scholar
  43. 43.
    Raniello R, Mollo E, Lorenti M, Gavagnin M, Buia MC (2007) Phytotoxic activity of caulerpenyne from the Mediterranean invasive variety of Caulerpa racemosa: a potential allelochemical. Biol Invasions 9:361–368Google Scholar
  44. 44.
    Barbier P, Guise S, Huitorel P, Amade P, Pesando D, Briand C, Peyrot V (2001) Caulerpenyne from Caulerpa taxifolia has an antiproliferative activity on tumor cell line SK-N-SH and modifies the microtubule network. Life Sci 70:415–429Google Scholar
  45. 45.
    Mozzachiodi R, Scuri R, Roberto M, Brunelli M (2001) Caulerpenyne, a toxin from the seaweed Caulerpa taxifolia, depresses afterhyperpolarization in invertebrate neurons. Neuroscience 107:519–526Google Scholar
  46. 46.
    Fischel J, Lemee R, Formento P, Caldani C, Moll JL, Pesando D, Meinsez A, Grelier P, Pietra P, Guerriiero A (1995) Cell growth inhibitory effects of caulerpenyne, a sesquiterpenoid from the marine algae Caulerpa taxifolia. Anticancer Res 15:2155–2160Google Scholar
  47. 47.
    Yang P, Liu DQ, Liang TJ, Zhang HY, Liu AH, Guo YW, Mao SC (2015) Bioactive constituents from the green alga Caulerpa racemosa. Bioorg Med Chem 23:38–45Google Scholar
  48. 48.
    Liu DQ, Mao SC, Zhang HY, Yu XQ, Feng MT, Wang B, Feng LH, Guo YW (2013) Racemosins A and B, two novel bisindole alkaloids from the green alga Caulerpa racemosa. Fitoterapia 91:15–20Google Scholar
  49. 49.
    Muenst S, Läubli H, Soysal SD, Zippelius A, Tzankov A, Hoeller S (2016) The immune system and cancer evasion strategies: therapeutic concepts. J Int Med 279(6):541–562Google Scholar
  50. 50.
    Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ (2017) From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov 16(4):273–284Google Scholar
  51. 51.
    Mehra R, Bhushan S, Yadav UP, Bast F, Singh S (2019) Caulerpa taxifolia inhibits cell proliferation and induces oxidative stress in breast cancer cells. Biologia 74(2):187–193Google Scholar
  52. 52.
    Mukhtar E, Adhami VM, Mukhtar H (2014) Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther 13(2):275–284Google Scholar
  53. 53.
    Hasanpourghadi M, Pandurangan AK, Mustafa MR (2017) Microtubule targeting agents in cancer therapy: elucidating the underlying molecular mechanisms. In: Farooqi A, Ismail M (eds) Molecular oncology: underlying mechanisms and translational advancements. Springer, Cham, pp 15–65Google Scholar
  54. 54.
    Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265Google Scholar
  55. 55.
    Ngan VK, Bellman K, Hill BT, Wilson L, Jordan MA (2001) Mechanism of mitotic block and inhibition of cell proliferation by the semisynthetic Vinca alkaloids vinorelbine and its newer derivative vinflunine. Mol Pharmacol 60:225–232Google Scholar
  56. 56.
    Pesando D, Huitorel P, Dolcini V, Amade P, Girard JP (1998) Caulerpenyne interferes with microtubule dependent events during the first mitotic cycle of sea urchin eggs. Eur J Cell Biol 77:19–26Google Scholar
  57. 57.
    Kurt O, Ozdal-Kurt F, Tuglu I, Deliloglu-Gurhan SI, Ozturk M (2009) Neurotoxic effect of Caulerpa racemosa var. cylindracea by neurite inhibition on the neuroblastoma cell line. Russ J Mar Biol 35:342–350Google Scholar
  58. 58.
    Horwitz SB (1994) Taxol (paclitaxel): mechanisms of action. Ann Oncol 5:S3–S6Google Scholar
  59. 59.
    Donoso JA, Haskins KM, Himes RH (1979) Effect of microtubule-associated proteins on the interaction of vincristine with microtubules and tubulin. Cancer Res 39(5):1604–1610Google Scholar
  60. 60.
    Bourdron J, Barbier P, Allegro D, Villard C, Lafitte D, Commeiras L, Parrain JL, Peyrot V (2009) Caulerpenyne binding to tubulin: structural modifications by a non conventional pharmacological agent. Med Chem 5:182–190Google Scholar
  61. 61.
    Wang M, Kaufman RJ (2014) The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer 14(9):581Google Scholar
  62. 62.
    Vandewynckel YP, Laukens D, Geerts A, Bogaerts E, Paridaens A, Verhelst X, Janssens S, Heindryckx F, Van Vlierberghe H (2013) The paradox of the unfolded protein response in cancer. Anticancer Res 33(11):4683–4694Google Scholar
  63. 63.
    Chou ST, Lin HC, Chuang MY, Chiu TH (2014) Treatment with Caulerpa microphysa pepsin-digested extract induces apoptosis in murine leukemia WEHI-3 cells. J Food Biochem 38:469–479Google Scholar
  64. 64.
    Lee AS (2007) GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res 67:3496–3499Google Scholar
  65. 65.
    Zhang LH, Zhang X (2010) Roles of GRP78 in physiology and cancer. J Cel Biochem 110(6):1299–1305Google Scholar
  66. 66.
    Guo J, Yuan Y, Lu D, Du B, Xiong L, Shi J, Yang L, Liu W, Yuan X, Zhang G, Wang F (2014) Two natural products, trans-phytol and (22E)-ergosta-6, 9, 22-triene-3β, 5α, 8α-triol, inhibit the biosynthesis of estrogen in human ovarian granulosa cells by aromatase (CYP19). Toxicol Appl Pharmacol 279(1):23–32Google Scholar
  67. 67.
    Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta (BBA)-Mol Cell Res 1833:3460–3470Google Scholar
  68. 68.
    Tonks NK (2005) Redox redux: revisiting PTPs and the control of cell signaling. Cell 121(5):667–670Google Scholar
  69. 69.
    Easty D, Gallagher W, Bennett DC (2006) Protein tyrosine phosphatases, new targets for cancer therapy. Curr Cancer Drug Targets 6(6):519–532Google Scholar
  70. 70.
    Bollu LR, Mazumdar A, Savage MI, Brown PH (2017) Molecular pathways: targeting protein tyrosine phosphatases in cancer. Clin Cancer Res 0934Google Scholar
  71. 71.
    Lessard L, Stuible M, Tremblay ML (2010) The two faces of PTP1B in cancer. Biochim Biophys Acta-Proteins Proteom 1804:613–619Google Scholar
  72. 72.
    Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11(5):325–337Google Scholar
  73. 73.
    Ferramosca A, Conte A, Guerra F, Felline S, Rimoli MG, Mollo E, Zara V, Terlizzi A (2016) Metabolites from invasive pests inhibit mitochondrial complex II: a potential strategy for the treatment of human ovarian carcinoma? Biochem Biophys Res Comm 473:1133–1138Google Scholar
  74. 74.
    Yu H, Zhang H, Dong M, Wu Z, Shen Z, Xie Y, Kong Z, Dai X, Xu B (2017) Metabolic reprogramming and AMPKα1 pathway activation by caulerpin in colorectal cancer cells. Int J Oncol 50:161–172Google Scholar
  75. 75.
    Fogarty S, Ross FA, Ciruelos DV, Gray A, Gowans GJ, Hardie DG (2016) AMPK causes cell cycle arrest in LKB1-deficient cells via activation of CAMKK2. Mol Can Res 0479Google Scholar
  76. 76.
    Pusapati RV, Daemen A, Wilson C, Sandowal W, Gao M, Haley B, Baudy AR, Hatzivassiliou G, Evangelista M, Settleman J (2016) mTORC1-dependent metabolic reprogramming underlies escape from glycolysis addiction in cancer cells. Cancer Cell 29:548–562Google Scholar
  77. 77.
    Han J, Zhang L, Guo H, Wysham WZ, Roque DR, Willson AK, Sheng X, Zhou C, Bae-Jump VL (2015) Glucose promotes cell proliferation, glucose uptake and invasion in endometrial cancer cells via AMPK/mTOR/S6 and MAPK signaling. Gynecol Oncol 138(3):668–675Google Scholar
  78. 78.
    Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166Google Scholar
  79. 79.
    Otto T, Sicinski P (2017) Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 17(2):93Google Scholar
  80. 80.
    Lakmal HHC, Samarakoon KW, Lee W, Lee JH, Abeytunga DT, Lee HS, Jeon YJ (2014) Anticancer and antioxidant effects of selected Sri Lankan marine algae. J Natl Sci Found Sri Lanka 42(4):315–323Google Scholar
  81. 81.
    Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411(6835):342Google Scholar
  82. 82.
    Lopez J, Tait SW (2015) Mitochondrial apoptosis: killing cancer using the enemy within. Br J Caner 112(6):957Google Scholar
  83. 83.
    Maeda R, Ida T, Ihara H, Sakamoto T (2012) Induction of apoptosis in MCF-7 cells by β-1, 3-xylooligosaccharides prepared from Caulerpa lentillifera. Biosci Biotechnol Biochem 76:1032–1034Google Scholar
  84. 84.
    Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9:501–507Google Scholar
  85. 85.
    Cregan SP, Dawson VL, Slack RS (2004) Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23:2785–2796Google Scholar
  86. 86.
    Kanegawa K, Harada H, Myouga H, Katakura Y, Shirahata S, Kamei Y (2000) Telomerase inhibiting activity in vitro from natural resources, marine algae extracts. Cytotechnol 33:221–227Google Scholar
  87. 87.
    Blasco MA (2015) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genetics 6:611–622Google Scholar
  88. 88.
    Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95Google Scholar
  89. 89.
    Galanis A, Pappa A, Giannakakis A, Lanitis E, Dangaj D, Sandaltzopoulos R (2008) Reactive oxygen species and HIF-1 signalling in cancer. Cancer Lett 266(1):12–20Google Scholar
  90. 90.
    Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732Google Scholar
  91. 91.
    Liu Y, Morgan JB, Coothankandaswamy V, Liu R, Jekabsons MB, Mahdi F, Nagle DG, Zhou YD (2009) The Caulerpa pigment caulerpin inhibits HIF-1 activation and mitochondrial respiration. J Nat Prod 72:2104–2109Google Scholar
  92. 92.
    Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799Google Scholar
  93. 93.
    Lemée R, Pesando D, Durand-Clement M, Dubreuil A, Meinesz A, Guerriero A, Pietra F (1993) Preliminary survey of toxicity of the green alga Caulerpa taxifolia introduced into the Mediterranean. J App Phycol 5:485–493Google Scholar
  94. 94.
    Paul VJ, Fenical W (1987) Natural products chemistry and chemical defense in tropical marine algae of the phylum chlorophyta. Bioorg Mar Chem 1:1–29Google Scholar
  95. 95.
    Azhaguraj A, Milton MJ, Ganesh J, Ramakrishnan M, Antony S (2012) Prediction of biological activity spectra for secondary metabolites from marine Macroalgae Caulerpa Spp (Chlorophyta–Caulerpals. Int J Res J Pharm 3(5):320–323Google Scholar
  96. 96.
    Guo J, Yuan Y, Lu D, Du B, Xiong L, Shi J, Yang L, Liu W, Yuan X, Zhang G, Wang F (2014) Two natural products, trans-phytol and (22E)-ergosta-6, 9, 22-triene-3β, 5α, 8α-triol, inhibit the biosynthesis of estrogen in human ovarian granulosa cells by aromatase (CYP19). Toxicol App Pharmacol 279(1):23–32Google Scholar
  97. 97.
    Hong JF, Song YF, Liu Z, Zheng ZC, Chen HJ, Wang SS (2016) Anticancer activity of taraxerol acetate in human glioblastoma cells and a mouse xenograft model via induction of autophagy and apoptotic cell death, cell cycle arrest and inhibition of cell migration. Mol Med Rep 13(6):4541–4548Google Scholar
  98. 98.
    Wang H, Li YL, Shen WZ, Rui W, Ma XJ, Cen YZ (2007) Antiviral activity of a sulfoquinovosyldiacylglycerol (SQDG) compound isolated from the green alga Caulerpa racemosa. Bota Mar 50:185–190Google Scholar
  99. 99.
    Ohta K, Mizushima Y, Hirata N, Takemura M, Sugawara F, Matsukage A, Yoshida S, Sakaguchi K (1998) Sulfoquinovosyldiacylglycerol, KM043, a new potent inhibitor of eukaryotic DNA polymerases and HIV-reverse transcriptase type 1 from a marine red alga, Gigartina tenella. Chem Pharm Bull 46:684–686Google Scholar
  100. 100.
    Mayer AM, Paul VJ, Fenical W, Norris JN, De Carvalho MS, Jacobs RS (1993) Phospholipase A2 inhibitors from marine algae. In. Fourteenth international seaweed symposium, Springer, Berlin, pp 521–529Google Scholar
  101. 101.
    Rodrigues JA, De So Vanderlei E, Silva LM, De Araujo IW, De Queiroz IN, De Paula GA, Abreu TM, Ribeiro NA, Bezerra MM, Chaves HV, Lima V (2012) Antinociceptive and anti-inflammatory activities of a sulfated polysaccharide isolated from the green seaweed Caulerpa cupressoides. Pharmacol Rep 64:282–292Google Scholar
  102. 102.
    Rodrigues JA, Queiroz IN, Quindere AL, Vairo BC, Mourao PA, Benevides NM (2011) An antithrombin-dependent sulfated polysaccharide isolated from the green alga Caulerpa cupressoides has in vivo anti-and prothrombotic effects. Ciência Rural 41:634–639Google Scholar
  103. 103.
    Ghosh P, Adhikari U, Ghosal A, Pujol CA, Carlucci MJ, Damonte EB, Ray B (2004) In vitro anti-herpetic activity of sulfated polysaccharide fractions from Caulerpa racemosa. Phytochem 65:3151–3157Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centre for BiosciencesCentral University of PunjabBathindaIndia
  2. 2.Advanced Technology Platform Centre, Regional Centre for BiotechnologyNCR Biotech Science ClusterFaridabadIndia
  3. 3.Department of Plant SciencesCentral University of PunjabBathindaIndia
  4. 4.Laboratory of Molecular Medicine, Department of Human Genetics and Molecular MedicineCentral University of PunjabBathindaIndia
  5. 5.Computational Biology LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia

Personalised recommendations