Skip to main content
Log in

Phytosterols and triterpenes from Morinda lucida Benth. exhibit binding tendency against class I HDAC and HDAC7 isoforms

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The important role of histone deacetylases (HDACs) in the development of cancer has been demonstrated by various studies. Thus targeting HDACs with inhibitors is a major focus in anticancer drug research. Although few synthetic HDAC inhibitors (HDIs) have been approved for cancer treatment, they have significant undesirable side effects. Therefore emphases have been placed on natural HDIs as substitutes for the synthetic ones. In a bid to identify more HDIs, this study evaluated the binding tendency of compounds derived from Morinda lucida Benth. towards selected HDACs for the discovery of potent HDIs as potential candidates for anticancer therapeutics, based on the report of anticancer potentials of Morinda lucida-derived extracts and compounds. Givinostat and 49 Morinda-lucida derived compounds were docked against selected HDAC isoforms using AutodockVina, while binding interactions were viewed with Discovery Studio Visualizer, BIOVIA, 2016. Druglikeness and Absorption–Distribution–Metabolism–Excretion (ADME) parameters of the top 7 compounds were evaluated using the Swiss online ADME web tool. The results revealed that out of the 49 compounds, 3 phytosterols (campesterol, cycloartenol, and stigmasterol) and 2 triterpenes (oleanolic acid and ursolic acid) exhibited high HDAC inhibitory activity compared to givinostat. These 5 compounds also fulfill oral drugability of Lipinski rule of five. Morinda lucida-derived phytosterols and triterpenes show high binding tendency towards the selected HDACs and exhibited good drugability characteristics and are therefore good candidates for further studies in the search for therapies against abnormalities linked with over-activity of HDACs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Reddy DS, Wu X, Golub VM et al (2018) Measuring histone deacetylase inhibition in the brain. Curr Protoc Pharmacol 1–14. https://doi.org/10.1002/cpph.41

  2. Singh AK, Bishayee A, Pandey AK (2018) Targeting histone deacetylases with natural and synthetic agents: an emerging strategy. Nutrients 10:1–31. https://doi.org/10.3390/nu10060731

    Article  CAS  Google Scholar 

  3. Kumar S, Ahmad M, Waseem M, Pandey AK (2015) Drug targets for cancer treatment: an overview. Med Chem (Los Angeles) 5:115–123

    Article  CAS  Google Scholar 

  4. Sharma U, Sharma A, Pandey AK (2016) Medicinal attributes of major phenylpropanoids present in cinnamon. BMC Complement Altern Med 16:156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eckschlager T, Plch J, Stiborova M, Hrabeta J (2017) Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci 18:1–25. https://doi.org/10.3390/ijms18071414

    Article  CAS  Google Scholar 

  6. Ganai SA, Farooq Z, Banday S, Altaf M (2018) In silico approaches for investigating the binding propensity of apigenin and luteolin against class i HDAC isoforms. Future Med Chem. https://doi.org/10.4155/fmc-2018-0020

    Article  PubMed  Google Scholar 

  7. Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6:a018713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barneda-Zahonero B, Parra M (2012) Histone deacetylases and cancer. Mol Oncol 6:579–589. https://doi.org/10.1016/j.molonc.2012.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. De Ruijter A, Van Gennip A, Caron H et al (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ganai S (2016) Novel approaches towards designing of isoform-selective inhibitors against class ii histone deacetylases: the acute requirement for targetted anticancer therapy. CurrTopMedChem 16:2441–2452

    CAS  Google Scholar 

  11. Mottamal M, Zheng S, Huang T, Wang G (2015) Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 20:3898–3941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ropero S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1:19–25. https://doi.org/10.1016/j.molonc.2007.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilson A, Byun D, Popova N (2006) Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem 281:13548–13558

    Article  CAS  PubMed  Google Scholar 

  14. Lagger S, Meunier DMM et al (2010) Crucial function ofhistone deacetylase 1 for differentiation of teratomas in mice and humans. EMBO J 29:3992–4007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Halkidou K, Gaughan L, Cook S et al (2004) Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59:177–189

    Article  CAS  PubMed  Google Scholar 

  16. Song J, Noh J, Lee J (2005) Increased expression ofhistone deacetylase 2 is found in human gastric cancer. APMIS 113:264–268

    Article  CAS  PubMed  Google Scholar 

  17. Huang B, Laban M, Leung C (2005) Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent ofhistone deacetylase 1. Cell Death Differ 12:395–404

    Article  CAS  PubMed  Google Scholar 

  18. Muller BM, Jana LKA et al (2013) Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer-overexpression ofHDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC Cancer 13:215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Spurling C, Godman C, Noonan E et al (2008) HDAC3 overexpression and colon cancer cell proliferation and differentiation. Mol Carcinog 47:137–147

    Article  CAS  PubMed  Google Scholar 

  20. Oehme I, Deubzer H, Wegener D (2009) Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin Cancer Res 5:91–99

    Article  Google Scholar 

  21. Park S, Jun J, Jeong K (2011) Histone deacetylases 1, 6 and 8 are critical for invasion in breast cancer. Oncol Rep 25:677–1681

    Google Scholar 

  22. Ahn M-Y, Yoon J-H (2017) Histone deacetylase 7 silencing induces apoptosis and autophagy in salivary mucoepidermoid carcinoma cells. J Oral Pathol Med 46:276–283. https://doi.org/10.1111/ijlh.12426

    Article  CAS  PubMed  Google Scholar 

  23. Pandey M, Kaur P, Shukla S et al (2012) Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: in vitro and in vivo study. Mol Carcinog 51:952–962

    Article  CAS  PubMed  Google Scholar 

  24. Attoub S, Hassan A, Vanhoecke B (2011) Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells. Eur J Pharmacol 651:18–25

    Article  CAS  PubMed  Google Scholar 

  25. Soflaei SS, Momtazi-Borojeni AA, Majeed M et al (2018) Curcumin: a natural Pan-HDAC inhibitor in cancer. Curr Pharm Des 24:123–129. https://doi.org/10.2174/1381612823666171114165051

    Article  CAS  PubMed  Google Scholar 

  26. Murugan K, Sangeetha S, Ranjitha S et al (2015) HDACiDB: a database for histone deacetylase inhibitors. Drug Des Devel Ther 9:2257–2264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sowemimo AA, Fakoya FA, Awopetu I et al (2007) Toxicity and mutagenic activity of some selected Nigerian plants. J Ethnopharmacol 113:427–432. https://doi.org/10.1016/j.jep.2007.06.024

    Article  CAS  PubMed  Google Scholar 

  28. Ashidi JS, Houghton PJ, Hylands PJ, Efferth T (2010) Ethnobotanical survey and cytotoxicity testing of plants of South-western Nigeria used to treat cancer, with isolation of cytotoxic constituents from Cajanus cajan Millsp. leaves. J Ethnopharmacol 128:501–512. https://doi.org/10.1016/j.jep.2010.01.009

    Article  CAS  PubMed  Google Scholar 

  29. Durodola JI (1974) Anti-neoplastic property of crystalline compound extracted from Morinda lucida. Planta Med 26:208–211

    Article  CAS  PubMed  Google Scholar 

  30. Appiah-opong R, Tuffour I, Annor GK et al (2016) Antiproliferative, antioxidant activities and apoptosis induction by Morinda lucida and Taraxacum officinale in human HL-60 leukemia cells. J Glob Biosci 5:4281–4291

    Google Scholar 

  31. Nweze NE (2012) In vitro anti-trypanosomal activity of Morinda lucida leaves. African J Biotechnol 11:1812–1817. https://doi.org/10.5897/AJB11.862

    Article  Google Scholar 

  32. Samje M, Metuge J, Mbah J et al (2014) In vitro anti- Onchocerca ochengi activities of extracts and chromatographic fractions of Craterispermum laurinum and Morinda lucida. BMC Complement Altern Med 14:1–12. https://doi.org/10.1186/1472-6882-14-325

    Article  Google Scholar 

  33. Suzuki M, Tung HN, Kwofie KD et al (2015) New anti-trypanosomal active tetracyclic iridoid isolated from Morinda lucida Benth. Biorgan Med Chem Lett http://dx:1–4. https://doi.org/10.1016/j.bmcl.2015.05.003

  34. O’Boyle NM, Banck M, James CA et al (2011) Open babel: an open chemical toolbox. J Cheminform 3:33. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  36. McGinnity DF, Collington J, Austin RP, Riley RJ (2007) Evaluation of human pharmacokinetics, therapeutic dose and exposure predictions using marketed oral drugs. Curr Drug Metab. https://doi.org/10.2174/138920007780866799

    Article  PubMed  Google Scholar 

  37. Paul Gleeson M, Hersey A, Hannongbua S (2011) In-silico ADME models: a general assessment of their utility in drug discovery applications. Curr Top Med Chem. https://doi.org/10.2174/156802611794480927

    Article  PubMed  Google Scholar 

  38. Daina A, Michielin O, Zoete V (2014) ILOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J Chem Inf Model 54:3284–3301. https://doi.org/10.1021/ci500467k

    Article  CAS  PubMed  Google Scholar 

  39. Daina A, Zoete V (2016) A BOILED-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 11:1117–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  41. Huang SY, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci 11(8):3016–3034

    Article  CAS  Google Scholar 

  42. Raj RA, John Milton MC, Prakasam A et al (2018) In silico molecular docking of bioactive compound Pregnan-20-one,5,6-epoxy-3,17,dihydroxy-16 methyl-[3a,5a,6a,16a] with brain cancer protein(1qh4): a promising molecular target. 9:51–55

  43. Hsu KC, Liu CY, Lin TE et al (2017) Novel class IIA-selective histone deacetylase inhibitors discovered using an in silico virtual screening approach. Sci Rep 7(1):3228. https://doi.org/10.1038/s41598-017-03417-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yoon S, Eom GH (2016) HDAC and HDAC inhibitor: from cancer to cardiovascular diseases. Chonnam Med J 52(1):1 https://doi.org/10.4068/cmj.2016.52.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tambunan USF, Bramantya N, Parikesit AA (2011) In silico modification of suberoylanilide hydroxamic acid (SAHA) as potential inhibitor for class II histone deacetylase (HDAC). BMC Bioinform. https://doi.org/10.1186/1471-2105-12-S13-S23

    Article  Google Scholar 

  46. Awad AB, Fink CS (2000) Phytosterols as anticancer dietary components: evidence and mechanism of action. J Nutr 130:2127–2130

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Z, Luo Z, Shi H et al (2017) Research advance of functional plant pharmaceutical cycloartenol about pharmacological and physiological activity. J Chinese Mater medica 42:433–437

    Google Scholar 

  48. da Silva I, Kaluderovic G, de Oliveira P et al (2018) Apoptosis caused by triterpenes and phytosterols and antioxidant activity of an enriched flavonoid extract from Passiflora mucronata. Anticancer Agents Med Chem. https://doi.org/10.2174/1871520618666180315090949

    Article  PubMed  Google Scholar 

  49. Choi J, Lee E, Lee H et al (2007) Identification of campesterol from Chrysanthemum coronarium L. and its antiangiogenic activities. Phyther Res 21:954–959. https://doi.org/10.1002/ptr

    Article  CAS  Google Scholar 

  50. Kangsamaksin T, Chaithongyot S, Wootthichairangsan C (2017) Lupeol and stigmasterol suppress tumor angiogenesis and inhibit cholangiocarcinoma growth in mice via downregulation of tumor necrosis factor- α. PLoS One 12:1–16. https://doi.org/10.1371/journal.pone.0189628

    Article  CAS  Google Scholar 

  51. Petronelli A, Pannitteri G, Testa U (2009) Triterpenoids as new promising anticancer drugs. Anticancer Drugs 20:880–892. https://doi.org/10.1097/CAD.0b013e328330fd90

    Article  CAS  PubMed  Google Scholar 

  52. Chen I, Lu M, Du Y et al (2009) Cytotoxic triterpenoids from the stems of Microtropis japonica. J Nat Prod 72:6–11

    Google Scholar 

  53. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249

    Article  CAS  PubMed  Google Scholar 

  54. Liu J (1995) Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol 49:57–68

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayode Ezekiel Adewole.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishola, A.A., Adewole, K.E. Phytosterols and triterpenes from Morinda lucida Benth. exhibit binding tendency against class I HDAC and HDAC7 isoforms. Mol Biol Rep 46, 2307–2325 (2019). https://doi.org/10.1007/s11033-019-04689-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04689-8

Keywords

Navigation