Calendula arvensis L. as an anti-cancer agent against breast cancer cell lines

  • Nael AbutahaEmail author
  • Fahd A. Nasr
  • Al-Zahrani Mohammed
  • AbdelHabib Semlali
  • Fahd A. Al-Mekhlafi
  • Mohamed A. Wadaan
Original Article


Calendula arvensis L. is used in traditional folk medicine for the treatment of several diseases. Leaves, stems, and flowers of C. arvensis were extracted using a Soxhlet extractor with different solvents (i.e., hexane, chloroform, ethyl acetate, and methanol). The ethyl acetate extract of C. arvensis flowers (CAF EtOAC) had cytotoxic activity against MCF-7 and MDA-MB-231 breast cancer cells, with IC50 values of 70 and 78 µg/mL, respectively. Microscopic examination revealed concentration-dependent cell shrinkage, cell detachment, nuclear fragmentation, and chromatin condensation. The CAF EtOAC inhibited the migration of cultured cells in a scratch wounding assay, indicating a possible defense against metastasis. The same extract also caused apoptosis by downregulating Bcl-2 and upregulating Bax and caspase 3/7 activity. Phytochemical analyses revealed the presence of phenols and flavonoids, and gas chromatography-mass spectroscopy (GC-MS) revealed a high content of linolenic acid in the extract. Based on our data, the CAF EtOAC may provide active ingredients for the development of novel chemotherapeutics for breast cancer therapy.


Apoptosis Breast cancer Calendula arvensis Cell migration GC-MS analysis 



The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project No. RG-1439-030.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Al Diab A, Qureshi S, Al Saleh KA, Al Qahtani A, Aleem A, Algamdi M (2013) Review on breast cancer in the Kingdom of Saudi Arabia. Middle-East J Sci Res 14:532–543Google Scholar
  2. 2.
    Alghamdi I, Hussain I, El-Sheemy M, Alghamdi M (2013) The incidence rate of female breast cancer in Saudi Arabia: an observational descriptive epidemiological analysis of data from Saudi cancer registry 2001–2008. Breast Cancer: Targets Ther 53:103Google Scholar
  3. 3.
    Damery S, Gratus C, Grieve R, Warmington S, Jones J, Routledge P, Greenfield S, Dowswell G, Sherriff J, Wilson S (2011) The use of herbal medicines by people with cancer: a cross-sectional survey. Br J Cancer 104:927–933Google Scholar
  4. 4.
    Sánchez-González PD, López-Hernández FJ, López-Novoa JM, Morales AI (2011) An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Crit Rev Toxicol 41:803–821Google Scholar
  5. 5.
    Jung IL (2014) Soluble extract from Moringa oleifera leaves with a new anticancer activity. PloS one 9:e95492Google Scholar
  6. 6.
    Rahman MA, Mossa JS, Al-Said MS, Al-Yahya MA (2004) Medicinal plant diversity in the flora of Saudi Arabia 1: a report on seven plant families. Fitoterapia 75:149–161Google Scholar
  7. 7.
    Arora D, Rani A, Sharma A (2013) A review on phytochemistry and ethnopharmacological aspects of genus Calendula. Pharmacogn Rev 7:179Google Scholar
  8. 8.
    Tiwari S (2008) Plants: a rich source of herbal medicine. J Nat Prod 1:27–35Google Scholar
  9. 9.
    Dall’Acqua S, Cervellati R, Loi MC, Innocenti G (2008) Evaluation of in vitro antioxidant properties of some traditional Sardinian medicinal plants: investigation of the high antioxidant capacity of Rubus ulmifolius. Food Chem 106:745–749Google Scholar
  10. 10.
    Jamal MAHM, Moniruzzaman M, Shaheen MZ, Kamruzzaman M, Rashid M, Mahmud ML, Khan NA, Pervin H, Sharif IH (2014) Analysis of antimicrobial activity of Calendula arvensis against bacterial pathogens. Int J Phytother Res 4:10–15Google Scholar
  11. 11.
    Passalacqua N, Guarrera P, De Fine G (2007) Contribution to the knowledge of the folk plant medicine in Calabria region (Southern Italy). Fitoterapia 78:52–68Google Scholar
  12. 12.
    Ullah R, Ibrar M, Shah S, Hameed I (2012) Phytotoxic, cytotoxic and insecticidal activities of Calendula arvensis L. EJBPR 3:104–111Google Scholar
  13. 13.
    Tosun G, Yayli B, Arslan T, Yasar A, Karaoglu SA, Yayli N (2012) Comparative essential oil analysis of Calendula arvensis L. Extracted by hydrodistillation and microwave distillation and antimicrobial activities. Asian J Chem 24:1955Google Scholar
  14. 14.
    Ercetin T, Senol FS, Orhan IE, Toker G (2012) Comparative assessment of antioxidant and cholinesterase inhibitory properties of the marigold extracts from Calendula arvensis L. and Calendula officinalis L. Ind Crops Prod 36:203–208Google Scholar
  15. 15.
    Paolini J, Barboni T, Desjobert J-M, Djabou N, Muselli A, Costa J (2010) Chemical composition, intraspecies variation and seasonal variation in essential oils of Calendula arvensis L. Biochem Syst Ecol 38:865–874Google Scholar
  16. 16.
    Semlali A, Al Amri A, Azzi A, Al Shahrani O, Arafah M, Kohailan M, Aljebreen AM, Almadi MA, Azzam NA, Parine NR (2015) Expression and new exon mutations of the human beta defensins and their association on colon cancer development. PloS ONE 10:e0126868Google Scholar
  17. 17.
    Liang C-C, Park AY, Guan J-L (2007) In vitro scratch assay a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333Google Scholar
  18. 18.
    Ghosh S, Derle A, Ahire M, More P, Jagtap S, Phadatare SD, Patil AB, Jabgunde AM, Sharma GK, Shinde VS (2013) Phytochemical analysis and free radical scavenging activity of medicinal plants Gnidia glauca and Dioscorea bulbifera. PloS ONE 8:e82529Google Scholar
  19. 19.
    Abudunia A, Ansar M, Taoufik J, Ramli Y, Essassi E, Ibrahimi A, Khedid K (2014) Evaluation of antibacterial activity of extracts from Calendula aventis flowers. J Chem Pharm Res 6:156–161Google Scholar
  20. 20.
    Marvibaigi M, Amini N, Supriyanto E, Majid FAA, Jaganathan SK, Jamil S, Almaki JH, Nasiri R (2016) Antioxidant activity and ROS-dependent apoptotic effect of Scurrula ferruginea (Jack) danser methanol extract in human breast cancer cell MDA-MB-231. PloS ONE 11(7):e0158942Google Scholar
  21. 21.
    Phang C-W, Malek SNA, Ibrahim H (2013) Antioxidant potential, cytotoxic activity and total phenolic content of Alpinia pahangensis rhizomes. BMC Complement Altern Med 13:243Google Scholar
  22. 22.
    Sahreen S, Khan MR, Khan RA (2010) Evaluation of antioxidant activities of various solvent extracts of Carissa opaca fruits. Food Chem 122:1205–1211Google Scholar
  23. 23.
    Xia G-H, Chen B-A, Shao Z-Y, Lu H-X, Konstanze D, Hartmut D (2007) Mechanism of 2-methoxyestradiol-induced apoptosis in myelodysplastic syndrome MUTZ-1 cell line. Zhongguo shi yan xue ye xue za zhi/Zhongguo bing li sheng li xue hui 15:296–301Google Scholar
  24. 24.
    Chan FK-M, Moriwaki K, De Rosa MJ (2013) Detection of necrosis by release of lactate dehydrogenase activity. Immune homeostasis. Methods Protoc 979:65–70Google Scholar
  25. 25.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70Google Scholar
  26. 26.
    Wang H, Oo Khor T, Shu L, Su Z-Y, Fuentes F, Lee J-H, Tony Kong A-N (2012) Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anti-Cancer Agents Med Chem 12:1281–1305Google Scholar
  27. 27.
    Ulukaya E, Acilan C, Ari F, Ikitimur E, Yilmaz Y (2011) A glance at the methods for detection of apoptosis qualitatively and quantitatively. Turk J Biochem 36:261–269Google Scholar
  28. 28.
    Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516Google Scholar
  29. 29.
    Chaabane W, User SD, El-Gazzah M, Jaksik R, Sajjadi E, Rzeszowska-Wolny J, Łos MJ (2013) Autophagy, apoptosis, mitoptosis and necrosis: interdependence between those pathways and effects on cancer. Arch Immunol et Ther Exp 61:43–58Google Scholar
  30. 30.
    Koff JL, Ramachandiran S, Bernal-Mizrachi L (2015) A time to kill: targeting apoptosis in cancer. Int J Mol Sci 16:2942–2955Google Scholar
  31. 31.
    Fan TJ, Han LH, Cong RS, Liang J (2005) Caspase family proteases and apoptosis. Acta Biochim Biophys Sin 37:719–727Google Scholar
  32. 32.
    Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456Google Scholar
  33. 33.
    Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21:485–495Google Scholar
  34. 34.
    Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12:895Google Scholar
  35. 35.
    van Zijl F, Krupitza G, Mikulits W (2011) Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res Rev Mutat Res 728:23–34Google Scholar
  36. 36.
    Weng C-J, Yen G-C (2012) Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Cancer Metastasis Rev 31:323–351Google Scholar
  37. 37.
    Glorieux C, Auquier J, Dejeans N, Sid B, Demoulin J-B, Bertrand L, Verrax J, Calderon PB (2014) Catalase expression in MCF-7 breast cancer cells is mainly controlled by PI3K/Akt/mTor signaling pathway. Biochem Pharmacol 89:217–223Google Scholar
  38. 38.
    Baker AM, Oberley LW, Cohen MB (1997) Expression of antioxidant enzymes in human prostatic adenocarcinoma. Prostate 32:229–233Google Scholar
  39. 39.
    Bora KS, Sharma A (2011) Evaluation of antioxidant and free-radical scavenging potential of Artemisia absinthium. Pharm Biol 49:1216–1223Google Scholar
  40. 40.
    Choi E-J, Kim G-H (2013) Antioxidant and anticancer activity of Artemisia princeps var. orientalis extract in HepG2 and Hep3B hepatocellular carcinoma cells. Chin J Cancer Res 25:536–543Google Scholar
  41. 41.
    Glorieux C, Dejeans N, Sid B, Beck R, Calderon PB, Verrax J (2011) Catalase overexpression in mammary cancer cells leads to a less aggressive phenotype and an altered response to chemotherapy. Biochem Pharmacol 82:1384–1390Google Scholar
  42. 42.
    Abrahim NN, Kanthimathi M, Abdul-Aziz A (2012) Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase. BMC Complement Altern Med 12:220Google Scholar
  43. 43.
    Tschugguel W, Schneeberger C, Unfried G, Czerwenka K, Weninger W, Mildner M, Gruber DM, Sator MO, Waldhör T, Huber JC (1999) Expression of inducible nitric oxide synthase in human breast cancer depends on tumor grade. Breast Cancer Res Treat 56:143–149Google Scholar
  44. 44.
    Bani-Sacchi T, Bigazzi M, Bani D, Mannaioni PF, Masini E (1995) Relaxin-induced increased coronary flow through stimulation of nitric oxide production. Br J Pharmacol 116:1589–1594Google Scholar
  45. 45.
    Kumar S, Kashyap P (2015) Antiproliferative activity and nitric oxide production of a methanolic extract of Fraxinus micrantha on michigan cancer foundation-7 mammalian breast carcinoma cell line. J Intercult Ethnopharmacol 4:109Google Scholar
  46. 46.
    Reveneau S, Arnould L, Jolimoy G, Hilpert S, Lejeune P, Saint-Giorgio V, Belichard C, Jeannin J-F (1999) Nitric oxide synthase in human breast cancer is associated with tumor grade, proliferation rate, and expression of progesterone receptors. Lab Investig J Tech Methods Pathol 79:1215–1225Google Scholar
  47. 47.
    Fukumura D, Kashiwagi S, Jain RK (2006) The role of nitric oxide in tumour progression. Nat Rev Cancer 6:521–534Google Scholar
  48. 48.
    Tang ELH, Rajarajeswaran J, Fung S, Kanthimathi M (2015) Petroselinum crispum has antioxidant properties, protects against DNA damage and inhibits proliferation and migration of cancer cells. J Sci Food Agric 95:2763–2771Google Scholar
  49. 49.
    Dommels YE, Haring MM, Keestra NG, Alink GM, van Bladeren PJ, van Ommen B (2003) The role of cyclooxygenase in n-6 and n-3 polyunsaturated fatty acid mediated effects on cell proliferation, PGE2 synthesis and cytotoxicity in human colorectal carcinoma cell lines. Carcinogenesis 24:385–392Google Scholar
  50. 50.
    Lee KW, Lee HJ, Cho HY, Kim YJ (2005) Role of the conjugated linoleic acid in the prevention of cancer. Crit Rev Food Sci Nutr 45:135–144Google Scholar
  51. 51.
    Harada H, Yamashita U, Kurihara H, Fukushi E, Kawabata J, Kamei Y (2001) Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Res 22:2587–2590Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Nael Abutaha
    • 1
    Email author
  • Fahd A. Nasr
    • 2
  • Al-Zahrani Mohammed
    • 3
  • AbdelHabib Semlali
    • 4
  • Fahd A. Al-Mekhlafi
    • 1
  • Mohamed A. Wadaan
    • 1
  1. 1.Bioproducts Research Chair, Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Medicinal Aromatic, and Poisonous Plants Research Centre, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
  3. 3.College of Science, Biology DepartmentAl Imam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
  4. 4.Groupe de Recherche en Écologie Buccale, Faculté de Médecine DentaireUniversité LavalQuébecCanada

Personalised recommendations