Advertisement

Epistasis between ADIPOQ rs1501299 and PON1 rs662 polymorphisms is potentially associated with the development of knee osteoarthritis

  • Javier Fernández-TorresEmail author
  • Gabriela Angélica Martínez-Nava
  • Yessica Zamudio-Cuevas
  • Karina Martínez-Flores
  • Rolando Espinosa-Morales
Original Article
  • 15 Downloads

Abstract

Overweight produces oxidative stress (OS) on the articular cartilage, with the subsequent risk of developing knee osteoarthritis (OA). Associations between genetic polymorphisms related to OS and OA have been reported, but it is currently unknown whether there exist interactions among them that affect OA development. To identify and evaluate interactions between multiple SNPs related to OS in Mexican knee OA patients. Ninety-two knee OA patients were included in the study, which were compared to 147 healthy controls. Nine variants of six genes (PEPD, AGER, IL6, ADIPOQ, PON1, and CA6) related to OS were genotyped in both study groups through the OpenArray system. Epistasis was analyzed with the multifactor dimensionality reduction (MDR) method. The MDR analysis revealed a significant interaction (p = 0.0107) between polymorphisms rs1501299 (ADIPOQ) and rs662 (PON1), with an entropy value of 9.84%; in addition, high and low risk genotypes were identified between these two polymorphisms. The effect of the interaction between rs1501299 (ADIPOQ) and rs662 (PON1) polymorphisms seems to play an important role in OA pathogenesis; so the epistasis analysis may provide an excellent tool for identifying individuals at high risk for developing OA.

Keywords

Knee osteoarthritis Oxidative stress Multifactor dimensionality reduction Epistasis Single nucleotide polymorphism 

Notes

Acknowledgements

We thank the support provided by Dr. Daniela Garrido-Rodríguez in facilitating the laboratory where we genotyped the samples. The authors thank Dr. Alberto López-Reyes for supporting the purchase of the genotyping chip.

Funding

The study was funded by departmental resources.

Compliance with ethical standards

Conflict of interest

The authors declare that they have not conflict of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the INRLGII-Institutional Research and Ethical Committee (CONBIOETICA-09-CEI-031-20171207) and with the Helsinki Declaration (1964). This study was approved by the ethics committee of the INRLGII.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Prieto-Alhambra D, Judge A, Javaid MK, Cooper C, Diez-Perez A, Arden NK (2014) Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Ann Rheum Dis 73:1659–1664CrossRefGoogle Scholar
  2. 2.
    Conway R, McCarthy GM (2015) Obesity and osteoarthritis: more than just mechanics. EMJ Rheumatol 2:75–83Google Scholar
  3. 3.
    Lepestos P, Papavassiliou AG (2016) ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta 1862:576–591CrossRefGoogle Scholar
  4. 4.
    Ziskoven C, Jäger M, Kircher J, Patzer T, Bloch W, Brixius K et al (2011) Physiology and pathophysiology of nitrosative and oxidative stress in osteoarthritic joint destruction. Can J Physiol Pharmacol 89:455–466CrossRefGoogle Scholar
  5. 5.
    Regan EA, Bowler RP, Crapo JD (2008) Joint fluid antioxidants are decreased in osteoarthritic joints compared to joints with macroscopically intact cartilage and subacute injury. Osteoarthr Cartil 16:515–521CrossRefGoogle Scholar
  6. 6.
    Courties A, Gualillo O, Berenbaum F, Sellam J (2015) Metabolic stress-induced joint inflammation and osteoarthritis. Osteoarthr Cartil 23:1955–1965CrossRefGoogle Scholar
  7. 7.
    Aslan M, Duzenli U, Esen R, Soyoral Y (2017) Serum prolidase enzyme activity in obese subjects and its relationship with oxidative stress markers. Clin Chim Acta 473:186–190CrossRefGoogle Scholar
  8. 8.
    Phang JM, Pandhare J, Liu Y (2008) The metabolism of proline as microenvironmental stress substrate. J Nutr 138:2008S–2015SCrossRefGoogle Scholar
  9. 9.
    Ercan AC, Bahceci B, Polat S, Cenker OC, Bahceci I, Koroglu A et al (2017) Oxidative status and prolidase activities in generalized anxiety disorder. Asian J Psychiatr 25:118–122CrossRefGoogle Scholar
  10. 10.
    Clavijo-Cornejo D, Martínez-Flores K, Silva-Luna K, Martínez-Nava GA, Fernández-Torres J, Zamudio-Cuevas Y et al (2016) The overexpression of NALP3 inflammasome in knee osteoarthritis is associated with synovial membrane prolidase and NADPH oxidase 2. Oxid Med Cell Longev 2016:1472567CrossRefGoogle Scholar
  11. 11.
    Altay MA, Ertürk C, Bilge A, Yaptı M, Levent A, Aksoy N (2015) Evaluation of prolidase activity and oxidative status in patients with knee osteoarthritis: relationships with radiographic severity and clinical parameters. Rheumatol Int 35:1725–1731CrossRefGoogle Scholar
  12. 12.
    Altindag O, Erel O, Aksoy N, Selek S, Celik H, Karaoglanoglu M (2007) Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis. Rheumatol Int 27:339–344CrossRefGoogle Scholar
  13. 13.
    Drinda S, Franke S, Rüster M, Petrow P, Pullig O, Stein G et al (2005) Identification of the receptor for advanced glycation end products in synovial tissue of patients with rheumatoid arthritis. Rheumatol Int 25:411–413CrossRefGoogle Scholar
  14. 14.
    Zhao J, Yu Y, Wu Z, Wang L, Li W (2017) Memantine inhibits degradation of the articular cartilage extracellular matrix induced by advanced glycation end products (AGEs). Biomed Pharmacother 91:1193–1198CrossRefGoogle Scholar
  15. 15.
    Azim S, Nicholson J, Rebecchi MJ, Galbavy W, Feng T, Rizwan S et al (2018) Interleukin-6 and leptin levels are associated with preoperative pain severity in patients with osteoarthritis but not with acute pain after total knee arthroplasty. Knee 25:25–33CrossRefGoogle Scholar
  16. 16.
    Panina SB, Krolevets IV, Milyutina NP, Sagakyants AB, Kornienko IV, Ananyan AA et al (2017) Circulating levels of proinflammatory mediators as potential biomarkers of post-traumatic knee osteoarthritis development. J Orthop Traumatol 18:349–357CrossRefGoogle Scholar
  17. 17.
    Gandhi R, Takahashi M, Smith H, Rizek R, Mahomed NN (2010) The synovial fluid adiponectin-leptin ratio predicts pain with knee osteoarthritis. Clin Rheumatol 29:1223–1228CrossRefGoogle Scholar
  18. 18.
    de Boer TN, van Spil WE, Huisman AM, Polak AA, Bijlsma JW, Lafeber FP et al (2012) Serum adipokines in osteoarthritis; comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage. Osteoarthr Cartil 20:846–853CrossRefGoogle Scholar
  19. 19.
    Goswami B, Tayal D, Gupta N, Mallika V (2009) Paraoxonase: a multifaceted biomolecule. Clin Chim Acta 410:1–12CrossRefGoogle Scholar
  20. 20.
    Soran N, Altindag O, Cakir H, Celik H, Demirkol A, Aksoy N (2008) Assessment of paraoxonase activities in patients with knee osteoarthritis. Redox Rep 13:194–198CrossRefGoogle Scholar
  21. 21.
    Ertürk C, Altay MA, Selek S, Koçyiğit A (2012) Paraoxonase-1 activity and oxidative status in patients with knee osteoarthritis and their relationship with radiological and clinical parameters. Scand J Clin Lab Invest 72:433–439CrossRefGoogle Scholar
  22. 22.
    Supuran CT (2008) Carbonic anhydrases: an overview. Curr Pharm Des 14:603–614CrossRefGoogle Scholar
  23. 23.
    Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1:461–468CrossRefGoogle Scholar
  24. 24.
    Pfander D, Swoboda B, Cramer T (2006) The role of HIF-1alpha in maintaining cartilage homeostasis and during the pathogenesis of osteoarthritis. Arthritis Res Ther 8:104CrossRefGoogle Scholar
  25. 25.
    Schultz M, Jin W, Waheed A, Moed BR, Sly W, Zhang Z (2011) Expression profile of carbonic anhydrases in articular cartilage. Histochem Cell Biol 136:145–151CrossRefGoogle Scholar
  26. 26.
    Boskey AL (2003) Biomineralization: an overview. Connect Tissue Res 44(Suppl 1):5–9CrossRefGoogle Scholar
  27. 27.
    Fernández-Moreno M, Rego I, Carreira-García V, Blanco FJ (2008) Genetics in osteoarthritis. Curr Genom 9:542–547CrossRefGoogle Scholar
  28. 28.
    Wang T, Liang Y, Li H, Li H, He Q, Xue Y et al (2016) Single nucleotide polymorphisms and osteoarthritis: an overview and a meta-analysis. Medicine 95:e2811CrossRefGoogle Scholar
  29. 29.
    Ritchie MD, Hahn LW, Moore JH (2003) Power of multifactor dimensionality reduction for detecting gene–gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet Epidemiol 24:150–157CrossRefGoogle Scholar
  30. 30.
    Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene–gene and gene–environment interactions. Bioinformatics 19:376–382CrossRefGoogle Scholar
  31. 31.
    Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K et al (1986) Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and therapeutic criteria committee of the American Rheumatism Association. Arthritis Rheum 29:1039–1049CrossRefGoogle Scholar
  32. 32.
    Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthritis. Ann Rheum Dis 16:494–502CrossRefGoogle Scholar
  33. 33.
    Cho YS, Chen CH, Hu C, Long J, Ong RT, Sim X (2011) Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet 44:67–72CrossRefGoogle Scholar
  34. 34.
    Han Z, Liu Q, Sun C, Li Y (2012) The interaction between obesity and RAGE polymorphisms on the risk of knee osteoarthritis in Chinese population. Cell Physiol Biochem 30:898–904CrossRefGoogle Scholar
  35. 35.
    Li F, Xu J, Zheng J, Sokolove J, Zhu K, Zhang Y et al (2014) Association between interleukin-6 gene polymorphisms and rheumatoid arthritis in Chinese Han population: a case-control study and a meta-analysis. Sci Rep 4:5714CrossRefGoogle Scholar
  36. 36.
    Zhan D, Thumtecho S, Tanavalee A, Yuktanandana P, Anomasiri W, Honsawek S (2017) Association of adiponectin gene polymorphisms with knee osteoarthritis. World J Orthop 8:719–725CrossRefGoogle Scholar
  37. 37.
    Zhan D, Yuktanandana P, Anomasiri W, Tanavalee A, Honsawek S (2014) Association of adiponectin + 276G/T polymorphism with knee osteoarthritis. Biomed Rep 2:229–232CrossRefGoogle Scholar
  38. 38.
    Gupta N, Singh S, Maturu VN, Sharma YP, Gill KD (2011) Paraoxonase 1 (PON1) polymorphisms, haplotypes and activity in predicting cad risk in North-West Indian Punjabis. PLoS ONE 6:e17805CrossRefGoogle Scholar
  39. 39.
    Li ZQ, Hu XP, Zhou JY, Xie XD, Zhang JM (2015) Genetic polymorphisms in the carbonic anhydrase VI gene and dental caries susceptibility. Genet Mol Res 14:5986–5993CrossRefGoogle Scholar
  40. 40.
    Fernández-Torres J, Zamudio-Cuevas Y, López-Reyes A, Garrido-Rodríguez D, Martínez-Flores K, Lozada CA et al (2018) Gene–gene interactions of the Wnt/β-catenin signaling pathway in knee osteoarthritis. Mol Biol Rep 45:1089–1098CrossRefGoogle Scholar
  41. 41.
    Chung Y, Lee SY, Elston RC, Park T (2007) Odds ratio based multifactor-dimensionality reduction method for detecting gene–gene interactions. Bioinformatics 23:71–76CrossRefGoogle Scholar
  42. 42.
    Koskinen A, Juslin S, Nieminen R, Moilanen T, Vuolteenaho K, Moilanen E (2011) Adiponectin associates with markers of cartilage degradation in osteoarthritis and induces production of proinflammatory and catabolic factors through mitogen-activated protein kinase pathways. Arthritis Res Ther 13:R184CrossRefGoogle Scholar
  43. 43.
    Jiang L, Zhu X, Rong J, Xing B, Wang S, Liu A et al (2018) Obesity, osteoarthritis and genetic risk: The rs182052 polymorphism in the ADIPOQ gene is potentially associated with risk of knee osteoarthritis. Bone Joint Res 7:494–500CrossRefGoogle Scholar
  44. 44.
    Zhang Z, Li Y, Yang X, Wang L, Xu L, Zhang Q (2018) Susceptibility of multiple polymorphisms in ADIPOQ, ADIPOR1 and ADIPOR2 genes to myocardial infarction in Han Chinese. Gene 658:10–17CrossRefGoogle Scholar
  45. 45.
    Ertürk C, Altay MA, Bilge A, Çelik H (2017) Is there a relationship between serum ox-LDL, oxidative stress, and PON1 in knee osteoarthritis? Clin Rheumatol 36:2775–2780CrossRefGoogle Scholar
  46. 46.
    Shunmoogam N, Naidoo P, Chilton R (2018) Paraoxonase (PON)-1: a brief overview on genetics, structure, polymorphisms and clinical relevance. Vasc Health Risk Manag 14:137–143CrossRefGoogle Scholar
  47. 47.
    Tanimoto N, Kumon Y, Suehiro T, Ohkubo S, Ikeda Y, Nishiya K et al (2003) Serum paraoxonase activity decreases in rheumatoid arthritis. Life Sci 72:2877–2885CrossRefGoogle Scholar
  48. 48.
    Xu H, Qu Y (2017) Correlation of PON1 polymorphisms with ankylosing spondylitis susceptibility: a case-control study in Chinese Han population. Medicine 96:e7416CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Synovial Fluid LaboratoryInstituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”Mexico CityMexico
  2. 2.Rheumatology DepartmentInstituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”Mexico CityMexico

Personalised recommendations