Advertisement

Molecular Biology Reports

, Volume 46, Issue 2, pp 1603–1609 | Cite as

Identification and expression of the medaka inhibin βE subunit

  • Masahiro Morita
  • Osamu HashimotoEmail author
Original Article
  • 69 Downloads

Abstract

Activin E, a member of the TGF-β super family, is a protein dimer of mature inhibin βE subunits. Recently, it is reported that hepatic activin E may act as a hepatokine that alter whole body energy/glucose metabolism in human. However, orthologues of the activin E gene have yet to be identified in lower vertebrates, including fish. Here, we cloned the medaka (Oryzias latipes) activin E cDNA from liver. Among all the mammalian inhibin β subunits, the mature medaka activin E amino acid sequence shares the highest homology with mammalian activin E. Recombinant expression studies suggest that medaka activin E, the disulfide–bound mature form of mature inhibin βE subunits, may exert its effects in a way similar to that in mammals. Although activin E mRNA is predominantly expressed in liver in mammals, it is ubiquitously expressed in medaka tissues. Since expression in the liver was enhanced after a high fat diet, medaka activin E may be associated with energy/glucose metabolism, as shown in mice and human.

Keywords

Activin cDNA cloning Energy homeostasis Disease model Inhbe Recombinant protein 

Notes

Acknowledgements

The authors thank Dr. R. Nakao for helpful discussions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hawkins WE, Walker WW, Fournie JW, Manning CS, Krol RM (2003) Use of the Japanese medaka (Oryzias latipes) and guppy (Poecilia reticulata) in carcinogenesis testing under national toxicology program protocols. Toxicol Pathol 31(1_Suppl):88–91CrossRefGoogle Scholar
  2. 2.
    Klaunig JE, Barut BA, Goldblatt PJ (1984) Preliminary studies on the usefulness of medaka, Oryzias latipes, embryos in carcinogenicity testing. Natl Cancer Inst Monogr 65:155–161Google Scholar
  3. 3.
    Matsumoto T, Terai S, Oishi T, Kuwashiro S, Fujisawa K, Yamamoto N, Fujita Y, Hamamoto Y, Furutani-Seiki M, Nishina H, Sakaida I (2010) Medaka as a model for human nonalcoholic steatohepatitis. Dis Model Mech 3:431–440CrossRefGoogle Scholar
  4. 4.
    Kuwashiro S, Terai S, Oishi T, Fujisawa K, Matsumoto T, Nishina H, Sakaida I (2011) Telmisartan improves nonalcoholic steatohepatitis in medaka (Oryzias latipes) by reducing macrophage infiltration and fat accumulation. Cell Tissue Res 344:125–134CrossRefGoogle Scholar
  5. 5.
    Kasahara M, Naruse K, Sasaki S et al (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447:714–719CrossRefGoogle Scholar
  6. 6.
    Ansai S, Sakuma T, Yamamoto T, Ariga H, Uemura N, Takahashi R, Kinoshita M (2013) Efficient targeted mutagenesis in medaka using custom-designed transcription activator-like effector nucleases. Genetics 193:739–749CrossRefGoogle Scholar
  7. 7.
    Ansai S, Kinoshita M (2014) Targeted mutagenesis using CRISPR/Cas system in medaka. Biol Open 3:362–371CrossRefGoogle Scholar
  8. 8.
    Asaoka Y, Terai S, Sakaida I, Nishina H (2013) The expanding role of fish models in understanding non-alcoholic fatty liver disease. Dis Model Mech 6:905–914CrossRefGoogle Scholar
  9. 9.
    Wiater E, Vale W (2008) Activins and inhibins. In: Derynck R, Miyazono K (eds) The TGF-β Family. Cold Spring Harbor Laboratory Press, New York, pp 79–120Google Scholar
  10. 10.
    Deli A, Kreidl E, Santifaller S, Trotter B, Seir K, Berger W, Schulte-Hermann R, Rodgarkia-Dara C, Grusch M (2008) Activins and activin antagonists in hepatocellular carcinoma. World J Gastroenterol 14:1699–1709CrossRefGoogle Scholar
  11. 11.
    Rodgarkia-Dara C, Vejda S, Erlach N, Losert A, Bursch W, Berger W, Schulte-Hermann R, Grusch M (2006) The activin axis in liver biology and disease. Mutat Res 613:123–137CrossRefGoogle Scholar
  12. 12.
    Hashimoto O, Sekiyama K, Matsuo T, Hasegawa Y (2009) The role of activin E in glucose metabolism: transcriptional regulation of the inhibin/activin βE subunit gene in the liver. Life Sci 85:534–540CrossRefGoogle Scholar
  13. 13.
    Hashimoto O, Funaba M, Sekiyama K, Doi S, Shindo D, Sato R, Itoi H, Oiwa H, Morita M, Suzuki C, Sugiyama M, Yamakawa N, Takada H, Matsumura S, Inoue K, Oyadomari S, Sugino H, Kurisaki A (2018) Activin E controls energy homeostasis in both brown and white adipose tissues as a hepatokine. Cell Rep 25:1193–1203CrossRefGoogle Scholar
  14. 14.
    Sugiyama M, Kikuchi A, Misu H, Igawa H, Ashihara M, Kushima Y, Honda K, Suzuki Y, Kawabe Y, Kaneko S, Takamura T (2018) Inhibin βE (INHBE) is a possible insulin resistance-associated hepatokine identified by comprehensive gene expression analysis in human liver biopsy samples. PLoS ONE 13:e0194798CrossRefGoogle Scholar
  15. 15.
    Duran EM, Shapshak P, Worley J, Minagar A, Ziegler F, Haliko S, Moleon-Borodowsky I, Haslett PA (2005) Presenilin-1 detection in brain neurons and FOXP3 in peripheral blood mononuclear cells: normalizer gene selection for real time reverse transcriptase pcr using the delta delta Ct method. Front Biosci 10:2955–2965CrossRefGoogle Scholar
  16. 16.
    Hashimoto O, Tsuchida K, Ushiro Y, Hosoi Y, Hoshi N, Sugino H, Hasegawa Y (2002) cDNA cloning and expression of human activin βE subunit. Mol Cell Endocrinol 194:117–122CrossRefGoogle Scholar
  17. 17.
    Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6CrossRefGoogle Scholar
  18. 18.
    Oda S, Nishimatsu S, Murakami K, Ueno N (1995) Molecular cloning and functional analysis of a new activin β subunit: a dorsal mesoderm-inducing activity in Xenopus. Biochem Biophys Res Commun 210:581–588CrossRefGoogle Scholar
  19. 19.
    Ge W, Miura T, Kobayashi H, Peter RE, Nagahama Y (1997) Cloning of cDNA for goldfish activin βB subunit, and the expression of its mRNA in gonadal and non-gonadal tissues. J Mol Endocrinol 19:37–45CrossRefGoogle Scholar
  20. 20.
    Yam KM, Yu KL, Ge W (1999) Cloning and characterization of goldfish activin βA subunit. Mol Cell Endocrinol 154:45–54CrossRefGoogle Scholar
  21. 21.
    Wang Y, Ge W (2003) Involvement of cyclic adenosine 3′,5′–monophosphate in the differential regulation of activin βA and βB expression by gonadotropin in the zebrafish ovarian follicle cells. Endocrinology 144:491–499CrossRefGoogle Scholar
  22. 22.
    Fang J, Wang SQ, Smiley E, Bonadio J (1997) Genes coding for mouse activin βc and βe are closely linked and exhibit a liver-specific expression pattern in adult tissues. Biochem Biophys Res Commun 231:655–661CrossRefGoogle Scholar
  23. 23.
    Brüning A, Matsigou C, Brem GJ, Rahmeh M, MyIonas I (2012) Inhibin beta E is upregulated by drug-induced endoplasmic reticulum stress as a transcriptional target gene of ATF4. Toxicol Appl Pharmacol 264:300–304CrossRefGoogle Scholar
  24. 24.
    Dombroski BA, Nayak RR, Ewens KG, Ankener W, Cheung VG, Spielman RS (2010) Gene expression and genetic variation in response to endoplasmic reticulum stress in human cells. Am J Human Genet 86:719–729CrossRefGoogle Scholar
  25. 25.
    Özcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Özdelen E, Tuncman G, Görgün C, Glimcher LH, Hotamisligil GS (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461CrossRefGoogle Scholar
  26. 26.
    Bailly-Maitre B, Belgardt BF, Jordan SD, Coornaert B, von Freyend MJ, Kleinridders A, Mauer J, Cuddy M, Kress CL, Willmes D, Essig M, Hampel B, Protzer U, Reed JC, Brü̈ning JC (2010) Hepatic Bax inhibitor-1 inhibits IRE1 and protects from obesity-associated insulin resistance and glucose intolerance. J Biol Chem 285:6198–6207CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Kitasato University School of Veterinary MedicineTowada-shiJapan

Personalised recommendations