Advertisement

Molecular Biology Reports

, Volume 46, Issue 1, pp 1117–1125 | Cite as

Polymorphisms in XPC gene and risk for prostate cancer

  • Rahma Said
  • Karim Bougatef
  • Nouha Setti Boubaker
  • Rim Jenni
  • Amine Derouiche
  • Mohamed Chebil
  • Slah OuerhaniEmail author
Original Article
  • 107 Downloads

Abstract

Single nucleotide polymorphisms (SNP) in repair gene DNA such as XPC gene can reduce the DNA repair capacity (DRC). Reduced DRC induce genetic instability and may increase the susceptibility to prostate cancer (PC). We conducted a case-controls study to examine the relationship between XPC Lys939Gln and XPC-PAT polymorphisms and the risk for prostate cancer in Tunisian population. We have also correlated molecular results with clinical parameters (Gleason score and TNM status) and lifestyle factors (tobacco status, alcohol consumption, and exposition to professional risk factors) of prostate cancer patients. We have found that the XPC Lys939Gln polymorphism was not associated with a risk of prostate cancer. However the XPC PAT I/I genotype was found to be associated with 3.83-fold increased risk of prostate cancer compared to controls (p = 0.00006; OR 3.83; 95% CI (1.83–8.05)). The test of linkage disequilibrium showed that XPC-PAT polymorphism is in linkage disequilibrium with XPC Lys939Gln variants. The combined analysis of XPC Lys939Gln and XPC-PAT variants showed that patients who inherited (Lys/Gln + PAT D/D) genotypes were protected against prostate cancer development compared to controls. In the other hand, no significant association has been found between XPC polymorphisms and clinical parameters or between XPC polymorphisms and lifestyle factors.

Keywords

Polymorphism Prostate cancer Xeroderma pigmentosum complementary group C Tunisia 

Abbreviations

SNP

Single nucleotide polymorphisms

DRC

DNA repair capacity

PC

Prostate cancer

PSA

Prostate-specific antigen

NER

Nucleotide excision repair

BER

Base excision repair

MMR

Mismatch repair

DSBR

Double-strand break repair

TCR

Transcription-coupled repair

XPC

Xeroderma pigmentosum complementary group C

DRE

Digital rectal examination

EDTA

Ethylene diamine tetra-acetic acid

PCR

Polymerase chain reaction

PCR-RFLP

Restriction Fragment Length polymorphism

ORs

Odds ratios

CI

Confidence intervals

Notes

Acknowledgements

The team work would like to express their thanks and gratitude to the medical team of Urology department, Charles Nicolle Hospital, Tunis—Tunisia.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This project was approved by a Charles Nicolle ethical committee, Tunis; Tunisia.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Bello AP, Masip TC (2014) Prostate cancer epidemiology. Arch Esp de Urol 67(5):373–382Google Scholar
  2. 2.
    Curado MP, Shin HR, Storm H, Heanue M, Boyle P (2007) Cancer incidence in five continents IARC scientific publicationsGoogle Scholar
  3. 3.
    Forrest MS, Edwards SM, Houlston R, Kote-Jarai Z, Key T, Allen N, Knowles MA, Turner F, Ardern-Jones A, Murkin A, Williams S, Oram R, collaborators C-UBUpcs, Bishop DT, Eeles RA (2005) Association between hormonal genetic polymorphisms and early-onset prostate cancer. Prostate Cancer Prostat Dis 8:95.  https://doi.org/10.1038/sj.pcan.4500785 CrossRefGoogle Scholar
  4. 4.
    Gong Z, Agalliu I, Lin DW, Stanford JL, Kristal AR (2008) Cigarette smoking and prostate cancer-specific mortality following diagnosis in middle-aged men. Cancer Causes Control: CCC 19(1):25–31.  https://doi.org/10.1007/s10552-007-9066-9 CrossRefPubMedGoogle Scholar
  5. 5.
    Gong Z, Kristal AR, Schenk JM, Tangen CM, Goodman PJ, Thompson IM (2009) Alcohol consumption, finasteride, and prostate cancer risk: results from the prostate cancer prevention trial. Cancer 115(16):3661–3669.  https://doi.org/10.1002/cncr.24423 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rozet F, Hennequin C, Beauval JB, Beuzeboc P, Cormier L, Fromont G, Mongiat-Artus P, Ouzzane A, Ploussard G, Azria D, Brenot-Rossi I, Cancel-Tassin G, Cussenot O, Lebret T, Rebillard X, Soulié M, Renard-Penna R, Méjean A (2016) Recommandations en onco-urologie 2016–2018 du CCAFU: cancer de la prostate. Progrès en Urol 27:S95–S143.  https://doi.org/10.1016/s1166-7087(16)30705-9 CrossRefGoogle Scholar
  7. 7.
    He J, Shi TY, Zhu ML, Wang MY, Li QX, Wei QY (2013) Associations of Lys939Gln and Ala499Val polymorphisms of the XPC gene with cancer susceptibility: a meta-analysis. Int J Cancer 133(8):1765–1775.  https://doi.org/10.1002/ijc.28089 CrossRefPubMedGoogle Scholar
  8. 8.
    Liu Y, Wang H, Lin T, Wei Q, Zhi Y, Yuan F, Song B, Yang J, Chen Z (2012) Interactions between cigarette smoking and XPC-PAT genetic polymorphism enhance bladder cancer risk. Oncol Rep 28(1):337–345.  https://doi.org/10.3892/or.2012.1759 CrossRefPubMedGoogle Scholar
  9. 9.
    Brown KL, Roginskaya M, Zou Y, Altamirano A, Basu AK, Stone MP (2010) Binding of the human nucleotide excision repair proteins XPA and XPC/HR23B to the 5R-thymine glycol lesion and structure of the cis-(5R,6S) thymine glycol epimer in the 5′-GTgG-3′ sequence: destabilization of two base pairs at the lesion site. Nucleic Acids Res 38(2):428–440.  https://doi.org/10.1093/nar/gkp844 CrossRefPubMedGoogle Scholar
  10. 10.
    Jiang X, Zhou L-t, Zhang S-c, Chen K (2012) XPC polymorphism increases risk of digestive system cancers: current evidence from A meta-analysis. Chin J Cancer Res 24(3):181–189.  https://doi.org/10.1007/s11670-012-0181-0 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhu Y, Yang H, Chen Q, Lin J, Grossman HB, Dinney CP, Wu X, Gu J (2008) Modulation of DNA damage/DNA repair capacity by XPC polymorphisms. DNA Repair 7(2):141–148.  https://doi.org/10.1016/j.dnarep.2007.08.006 CrossRefPubMedGoogle Scholar
  12. 12.
    Marin MS, Lopez-Cima MF, Garcia-Castro L, Pascual T, Marron MG, Tardon A (2004) Poly (AT) polymorphism in intron 11 of the XPC DNA repair gene enhances the risk of lung cancer. Cancer Epidemiol, Biomark Prev 13 (11 Pt 1):1788–1793Google Scholar
  13. 13.
    Qiao Y, Spitz MR, Shen H, Guo Z, Shete S, Hedayati M, Grossman L, Mohrenweiser H, Wei Q (2002) Modulation of repair of ultraviolet damage in the host-cell reactivation assay by polymorphic XPC and XPD/ERCC2 genotypes. Carcinogenesis 23(2):295–299CrossRefPubMedGoogle Scholar
  14. 14.
    Sak SC, Barrett JH, Paul AB, Bishop DT, Kiltie AE (2005) The polyAT, intronic IVS11-6 and Lys939Gln XPC polymorphisms are not associated with transitional cell carcinoma of the bladder. Br J Cancer 92(12):2262–2265.  https://doi.org/10.1038/sj.bjc.6602616 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhang L, Zhang Z, Yan W (2005) Single nucleotide polymorphisms for DNA repair genes in breast cancer patients. Clin Chim Acta 359(1–2):150–155.  https://doi.org/10.1016/j.cccn.2005.03.047 CrossRefPubMedGoogle Scholar
  16. 16.
    Hirata H, Hinoda Y, Tanaka Y, Okayama N, Suehiro Y, Kawamoto K, Kikuno N, Majid S, Vejdani K, Dahiya R (2007) Polymorphisms of DNA repair genes are risk factors for prostate cancer. Eur J Cancer (Oxford, England 1990) 43(2):231–237.  https://doi.org/10.1016/j.ejca.2006.11.005 CrossRefGoogle Scholar
  17. 17.
    Wu H, Lv Z, Wang X, Zhang L, Mo N (2015) Lack of association between XPC Lys939Gln polymorphism and prostate cancer risk: an updated meta-analysis based on 3039 cases and 3253 controls. Int J Clin Exp Med 8(10):17959–17967PubMedPubMedCentralGoogle Scholar
  18. 18.
    Mirecka A, Paszkowska-Szczur K, Scott RJ, Gorski B, van de Wetering T, Wokolorczyk D, Gromowski T, Serrano-Fernandez P, Cybulski C, Kashyap A, Gupta S, Golab A, Slojewski M, Sikorski A, Lubinski J, Debniak T (2014) Common variants of xeroderma pigmentosum genes and prostate cancer risk. Gene 546(2):156–161.  https://doi.org/10.1016/j.gene.2014.06.026 CrossRefPubMedGoogle Scholar
  19. 19.
    Zou Y-F, Tao J-H, Ye Q-L, Pan H-F, Pan F-M, Su H, Ye D-Q (2013) Association of XPC gene polymorphisms with susceptibility to prostate cancer: evidence from 3936 subjects. Genet Test Mol Biomark 17(12):926–931.  https://doi.org/10.1089/gtmb.2013.0267 CrossRefGoogle Scholar
  20. 20.
    Evans GA (1990) Molecular cloning: a laboratory manual. 2nd edn. Volumes 1, 2, and 3. Current protocols in molecular biology. Cell 61 (1):17–18.  https://doi.org/10.1016/0092-8674(90)90210-6 CrossRefGoogle Scholar
  21. 21.
    Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50CrossRefGoogle Scholar
  22. 22.
    Agalliu I, Kwon EM, Salinas CA, Koopmeiners JS, Ostrander EA, Stanford JL (2010) Genetic variation in DNA repair genes and prostate cancer risk: results from a population-based study. Cancer Causes Control 21(2):289–300.  https://doi.org/10.1007/s10552-009-9461-5 CrossRefPubMedGoogle Scholar
  23. 23.
    Yoshino Y, Takeuchi S, Katoh T, Kuroda Y (2016) XPC intron11 C/A polymorphism as a risk factor for prostate cancer. Environ Health Prev Med 21(2):100–104.  https://doi.org/10.1007/s12199-015-0505-z CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dai QS, Hua RX, Zhang R, Huang YS, Hua ZM, Yun CT, Zeng RF, Long JT (2013) Poly (AT) deletion/insertion polymorphism of the XPC gene contributes to urinary system cancer susceptibility: a meta-analysis. Gene 528(2):335–342.  https://doi.org/10.1016/j.gene.2013.06.092 CrossRefPubMedGoogle Scholar
  25. 25.
    Mandal RK, Gangwar R, Kapoor R, Mittal RD (2012) Polymorphisms in base-excision and nucleotide-excision repair genes and prostate cancer risk in north Indian population. Indian J Med Res 135:64–71CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mittal RD, Mandal RK (2012) Genetic variation in nucleotide excision repair pathway genes influence prostate and bladder cancer susceptibility in North Indian population. Indian J Hum Genet 18(1):47–55.  https://doi.org/10.4103/0971-6866.96648 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wu X, Gu J, Grossman HB, Amos CI, Etzel C, Huang M, Zhang Q, Millikan RE, Lerner S, Dinney CP et al (2006) Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am J Hum Genet 78(3):464–479CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhu Y, Lai M, Yang H, Lin J, Huang M, Grossman HB, Dinney CP, Wu X (2007) Genotypes, haplotypes and diplotypes of XPC and risk of bladder cancer. Carcinogenesis 28(3):698–703CrossRefPubMedGoogle Scholar
  29. 29.
    Kahnamouei SA, Narouie B, Sotoudeh M, Mollakouchekian MJ, Simforoosh N, Ziaee SA, Samzadeh M, Afshari M, Jamaldini SH, Imeni M, Hasanzad M (2016) Association of XPC Gene Polymorphisms with Prostate Cancer Risk. Clin Lab 62(6):1009–1015PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Laboratory of Protein Engineering and Bio-active MoleculesNational Institute of Applied Science and Technology - University of CarthageTunisTunisia
  2. 2.Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of TunisTunisTunisia
  3. 3.Urology DepartmentCharles Nicolle HospitalTunisTunisia
  4. 4.Faculty of Sciences of BizerteUniversity of CarthageCarthageTunisia

Personalised recommendations