Advertisement

Bacterial exopolysaccharide promotes acid tolerance in Bacillus amyloliquefaciens and improves soil aggregation

  • Priyadarshini Deka
  • Gunajit Goswami
  • Pompi Das
  • Trishnamoni Gautom
  • Naimisha Chowdhury
  • Robin Chandra Boro
  • Madhumita BarooahEmail author
Original Article

Abstract

In this paper we report the isolation and taxonomic characterization of exopolysaccharide (EPS) producing bacteria followed by the role of EPS in conferring acid tolerance to the soil bacteria Bacillus amyloliquefaciens p16. The role of EPS in promoting soil aggregation is also presented. A total of 75 isolates were tested for acid tolerance and biofilm production under acid stress of which, 54 isolates were further tested for EPS production. Out of the 54 isolates, 28 isolates produced EPS in the range of (67.88 and 219.96 µg/ml) with B. amyloliquefaciens p16 showing the highest production. The 28 isolates characterized for phenotypic and molecular traits mostly belonged to the members of the genera Bacillus, Brevibacillus, Brevibacterium, Paenibacillus, Serretia, Pseudomonas, Arthrobacter and Lysinibacillus. The monosaccharide components of the EPS produced by B. amyloliquefaciens p16 shifted from galactose to arabinose under acid stress as revealed through HPLC analysis. Inactivation of the epsB gene encoding putative bacterial protein tyrosine kinase (BY-kinases) in B. amyloliquefaciens p16 resulted in significantly less EPS (33.23 µg/ml) production compared to wild-type (WT) (223.87 µg/ml). The mutant (B. amyloliquefaciens 6A5) was barely able to survive in pH 4.5 unlike that of the WT. Further, inoculation of the WT and mutant B. amyloliquefaciens 6A5 in the soil resulted in formation of small sized soil aggregates (42.41 mm) with less water holding capacity (27.67%) as compared to the soil treated with WT that produced larger soil aggregates of size 80.59 mm with higher 53.90% water holding capacity. This study indicates that EPS produced by acid-tolerant B. amyloliquefaciens p16 can not only impart acid tolerance to the bacteria but also aids in promoting soil aggregation when applied to the soil.

Keywords

Bacillus amyloliquefaciens Soil aggregation Exopolysaccharide Acid tolerance pMUTIN4 

Notes

Acknowledgements

The authors wish to acknowledge the Department of Biotechnology (DBT), Govt. of India, for financial assistance for the Project, “Screening of soil microbes for acid tolerance gene” under DBT-AAU Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, India. The authors are grateful to Dr. M. K. Modi, Head, Department of Agricultural Biotechnology and Dr. B. K. Sarmah, Director DBT-AAU Centre, AAU, Jorhat for providing the necessary facilities. The authors also wish to thank Dr. Deniel R. Zeigler, Director, Bacillus Genetic Stock Centre, USA for providing the pMUTIN4 vector as a generous gift.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interests.

Supplementary material

11033_2018_4566_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 KB)
11033_2018_4566_MOESM2_ESM.jpg (410 kb)
Supplementary material 2 (JPG 410 KB)
11033_2018_4566_MOESM3_ESM.jpg (148 kb)
Supplementary material 3 (JPG 148 KB)
11033_2018_4566_MOESM4_ESM.pdf (313 kb)
Supplementary material 4 (PDF 313 KB)

References

  1. 1.
    Boor KJ (2006) Bacterial stress responses: what doesn’t kill them can make them stronger. PLoS Biol 4:e23.  https://doi.org/10.1371/journal.pbio.0040023 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Tabitha T, Brown RT, Koenig DR, Huggins et al (2007) Lime effects on soil acidity, crop yield, and aluminum chemistry in direct-seeded cropping systems. Soil Sci Soc Am J 72:634–640.  https://doi.org/10.2136/sssaj2007.0061 CrossRefGoogle Scholar
  3. 3.
    Goswami G, Deka P, Das P et al (2017) Diversity and functional properties of acid-tolerant bacteria isolated from tea plantation soil of Assam. 3 Biotech 7:229.  https://doi.org/10.1007/s13205-017-0864-9 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Liu Y, Tang H, Lin Z, Xu P (2015) Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol Adv 33:1484–1492.  https://doi.org/10.1016/j.biotechadv.2015.06.001 CrossRefPubMedGoogle Scholar
  5. 5.
    Dilworth MJ, Rynne FG, Castelli JM et al (1999) Survival and exopolysaccharide production in Sinorhizobium meliloti WSM419 are affected by calcium and low pH. Microbiology 145:1585–1593.  https://doi.org/10.1099/13500872-145-7-1585 CrossRefPubMedGoogle Scholar
  6. 6.
    Kubota H, Senda S, Nomura N et al (2008) Biofilm formation by lactic acid bacteria and resistance to environmental stress. J Biosci Bioeng 106:381–386.  https://doi.org/10.1263/jbb.106.381 CrossRefPubMedGoogle Scholar
  7. 7.
    Stoodley P, Cargo R, Rupp CJ et al (2002) Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29:361–367.  https://doi.org/10.1038/sj.jim.7000282 CrossRefPubMedGoogle Scholar
  8. 8.
    Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867CrossRefGoogle Scholar
  9. 9.
    Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015.  https://doi.org/10.3390/ijms131114002 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398CrossRefGoogle Scholar
  11. 11.
    Lynch JM, Bragg E (1985) Microorganisms and soil aggregate stability. Springer, New York, pp 133–171Google Scholar
  12. 12.
    Kumar Singha T (2012) Microbial extracellular polymeric substances: production, isolation and applications. IOSR J Pharm 2:276–281.  https://doi.org/10.9790/3013-0220276281 CrossRefGoogle Scholar
  13. 13.
    Boone DR, Brenner DJ, Castenholz RW et al (2001) Bergey’s manual of systematic bacteriology. Springer, New YorkCrossRefGoogle Scholar
  14. 14.
    El-Newary SA, Ibrahim AY, Asker MS et al (2017) Production, characterization and biological activities of acidic exopolysaccharide from marine Bacillus amyloliquefaciens 3MS 2017. Asian Pac J Trop Med 10:652–662.  https://doi.org/10.1016/j.apjtm.2017.07.005 CrossRefPubMedGoogle Scholar
  15. 15.
    O’Toole GA (2011) Microtiter dish biofilm formation assay. J Vis Exp.  https://doi.org/10.3791/2437 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bose S, Khodke M, Basak S, Mallick SK (2009) Detection of biofilm producing Staphylococci: need of the hour. J Clin Diagnostic Res 3:1915–1920Google Scholar
  17. 17.
    Kim JU, Kim Y, Han KS et al (2006) Function of cell-bound and released exopolysaccharides produced by Lactobacillus rhamnosus ATCC 9595. J Microbiol Biotechnol 16:939–945Google Scholar
  18. 18.
    DuBois M, Gilles KA, Hamilton JK, Rebers PA and FS (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356.  https://doi.org/10.1021/ac60111a017 CrossRefGoogle Scholar
  19. 19.
    Brenner DJ, Staley JT, Krieg NR (2001) Classification of procaryotic organisms and the concept of bacterial speciation. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual® systematic bacteriology. Springer, New York, pp 27–31CrossRefGoogle Scholar
  20. 20.
    Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dubois M, Gilles KAHJPP, SF (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  22. 22.
    Karuppiah P, Venkatasam V, Ramasamy T (2014) Isolation and characterization of exopolysaccharide producing bacteria from Pak Bay (Mandapam). Int J Oceanogr Mar Ecol Syst 3:1–8.  https://doi.org/10.3923/ijomes.2014.1.8 CrossRefGoogle Scholar
  23. 23.
    Galisa PS, da Silva HAP, Macedo AVM et al (2012) Identification and validation of reference genes to study the gene expression in Gluconacetobacter diazotrophicus grown in different carbon sources using RT-qPCR. J Microbiol Methods 91:1–7.  https://doi.org/10.1016/j.mimet.2012.07.005 CrossRefPubMedGoogle Scholar
  24. 24.
    Baruah TC, Borthakur HP (1997) Text book of soil analysis. Vikas Publishing House Pvt. Ltd., New DelhiGoogle Scholar
  25. 25.
    Bray Roger H, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:3946Google Scholar
  26. 26.
    Casida LE, Klein DA, Santoro T (1964) Soil dehydrogenase activity. Soil Sci 98:371–376CrossRefGoogle Scholar
  27. 27.
    Pang PCK, Kolenko H (1986) Phosphomonoesterase activity in forest soils. Soil Biol Biochem 18:35–39.  https://doi.org/10.1016/0038-0717(86)90100-8 CrossRefGoogle Scholar
  28. 28.
    Green VS, Stott DE, Diack M (2005) Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biol Biochem.  https://doi.org/10.1016/j.soilbio.2005.06.020 CrossRefGoogle Scholar
  29. 29.
    Gambino M, Cappitelli F (2016) Mini-review: biofilm responses to oxidative stress. Biofouling 32:167–178.  https://doi.org/10.1080/08927014.2015.1134515 CrossRefPubMedGoogle Scholar
  30. 30.
    Clarridge JE III (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17:840–862.  https://doi.org/10.1128/CMR.17.4.840-862.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ehrhardt CJ, Chu V, Brown T et al (2010) Use of fatty acid methyl ester profiles for discrimination of Bacillus cereus T-strain spores grown on different media. Appl Environ Microbiol 76:1902–1912.  https://doi.org/10.1128/AEM.02443-09 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Pandey A, Palni LMS (1997) Bacillus species: the dominant bacteria of the rhizosphere of established tea bushes. Microbiol Res 152:359–365.  https://doi.org/10.1016/S0944-5013(97)80052-3 CrossRefPubMedGoogle Scholar
  33. 33.
    El-Dein MMN, El-Fallal AA, EL-Shahat AT, Faten EH (2004) Exopolysaccharides production by Pleurotus pulmonarius: factors affecting formation and their structures. Pak J Biol Sci 7:1078–1084.  https://doi.org/10.3923/pjbs.2004.1078.1084 CrossRefGoogle Scholar
  34. 34.
    Sutherland IW (1972) Bacterial exopolysaccharides. Adv Microb Physiol 8:143–213CrossRefGoogle Scholar
  35. 35.
    Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9.  https://doi.org/10.1099/00221287-147-1-3 CrossRefPubMedGoogle Scholar
  36. 36.
    Kimmel SA, Roberts RF, Ziegler GR (1998) Optimization of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus RR grown in a semidefined medium. Appl Environ Microbiol 64:659–664PubMedPubMedCentralGoogle Scholar
  37. 37.
    Elsholz AKW, Wacker SA, Losick R (2014) Self-regulation of exopolysaccharide production in Bacillus subtilis by a tyrosine kinase. Genes Dev 28:1710–1720.  https://doi.org/10.1101/gad.246397.114 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cerning J (1995) Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Lait 75:463–472CrossRefGoogle Scholar
  39. 39.
    Cerning J, Bouillanne C, Landon M, Desmazeaud M (1992) Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria. J Dairy Sci 75:692–699.  https://doi.org/10.3168/jds.S0022-0302(92)77805-9 CrossRefGoogle Scholar
  40. 40.
    Razack SA, Velayutham V, Thangavelu V (2013) Medium optimization for the production of exopolysaccharide by Bacillus subtilis using synthetic sources and agro wastes. Turk J Biol 37:280–288.  https://doi.org/10.3906/biy-1206-50 CrossRefGoogle Scholar
  41. 41.
    Arfarita N, Hidayati N, Rosyidah A et al (2016) Exploration of indigenous soil bacteria producing-exopolysaccharides for stabilizing of aggregates land potential as biofertilizer. J Degrad Min Lands Manag 4:697–702.  https://doi.org/10.15243/jdmlm.2016.041.697 CrossRefGoogle Scholar
  42. 42.
    Galle S, Arendt EK (2014) Exopolysaccharides from sourdough lactic acid bacteria. Crit Rev Food Sci Nutr 54:891–901.  https://doi.org/10.1080/10408398.2011.617474 CrossRefPubMedGoogle Scholar
  43. 43.
    Grobben GJ, Sikkema J, Smith MR, de Bont JAM (1995) Production of extracellular polysaccharides by Lactobacillus delbrueckii ssp. bulgaricus NCFB 2772 grown in a chemically defined medium. J Appl Bacteriol 79:103–107.  https://doi.org/10.1111/j.1365-2672.1995.tb03130.x CrossRefGoogle Scholar
  44. 44.
    Pham PL, Dupont I, Roy D et al (2000) Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation. Appl Environ Microbiol 66:2302–2310.  https://doi.org/10.1128/AEM.66.6.2302-2310.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Tease B, Jürgens UJ, Golecki JR et al (1991) Fine-structural and chemical analyses on inner and outer sheath of the cyanobacterium Gloeothece sp. PCC 6909. Antonie Van Leeuwenhoek 59:27–34.  https://doi.org/10.1007/BF00582116 CrossRefPubMedGoogle Scholar
  46. 46.
    Koo H, Falsetta ML, Klein MI (2013) The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res 92:1065–1073.  https://doi.org/10.1177/0022034513504218 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ozturk S, Aslim B (2010) Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress. Environ Sci Pollut Res 17:595–602.  https://doi.org/10.1007/s11356-009-0233-2 CrossRefGoogle Scholar
  48. 48.
    Kumar S, Chaudhuri S, Maiti SK (2013) Soil Dehydrogenase enzyme activity in natural and mine soil-a review. Middle-East J Sci Res 13:898–906.  https://doi.org/10.5829/idosi.mejsr.2013.13.7.2801 CrossRefGoogle Scholar
  49. 49.
    Lundgren B (1981) Fluorescein diacetate as a stain of metabolically active bacteria in soil. Oikos 36:17.  https://doi.org/10.2307/3544373 CrossRefGoogle Scholar
  50. 50.
    Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11:1034–1043.  https://doi.org/10.1111/j.1462-5822.2009.01323.x CrossRefPubMedGoogle Scholar
  51. 51.
    Dertli E, Colquhoun IJ, Gunning AP et al (2013) Structure and biosynthesis of two exopolysaccharides produced by Lactobacillus johnsonii FI9785. J Biol Chem 288:31938–31951.  https://doi.org/10.1074/jbc.M113.507418 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Grangeasse C, Cozzone A, Deutscher J, Mijakovic I (2007) Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology. Trends Biochem Sci 32:86–94.  https://doi.org/10.1016/j.tibs.2006.12.004 CrossRefPubMedGoogle Scholar
  53. 53.
    Chaudhari PR, Ahire DV, Ahire VD et al (2013) Soil bulk density as related to soil texture, organic matter content and available total nutrients of coimbatore soil. Int J Sci Res Publ 3:1–8Google Scholar
  54. 54.
    Chenu C, Pons CHRM (1985) Interaction of kaolinite and montmorillonite with neutral polysaccharides. In: Shultz LG, van Olphen H, Mumpton FA (eds) Proceedings of the international clay conference. The Clay Minerals Society, Bloomington, p 37Google Scholar
  55. 55.
    Lynch JM (1981) Promotion and inhibition of soil aggregate stabilization by micro-organisms. Microbiology 126:371–375.  https://doi.org/10.1099/00221287-126-2-371 CrossRefGoogle Scholar
  56. 56.
    Ashraf M, Hasnain S, Hussain F (2005) Exo-polysaccharides (EPS) producing biofilm bacteria in improving physico-chemical characteristics of the salt-affected soils. In: Raja IA et al (eds) Proceedings of international conference environment and sustainable development. COMSATS Institute of Information Technology, Abbottabad, pp 1527–1536Google Scholar
  57. 57.
    Degens BP (1997) Macro-aggregation of soils by biological bonding and binding mechanisms and the factors affecting these: a review. Aust J Soil Res 35:431.  https://doi.org/10.1071/S96016 CrossRefGoogle Scholar
  58. 58.
    Dick RP (1997) Soil enzyme activities as integrative indicators of soil health. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, New York, pp 121–156Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Agricultural BiotechnologyAssam Agricultural UniversityJorhatIndia

Personalised recommendations