Bioaccumulation, oxidative stress, immune responses and immune-related genes expression in northern snakehead fish, Channa argus, exposure to waterborne selenium

  • Muyang Li
  • Xinming Zhu
  • Jiaxin Tian
  • Ming Liu
  • Guiqin WangEmail author
Original Article


The objective of this study was to evaluate the toxic effects on bioaccumulation, oxidative stress, immune responses and immune-related genes expression of Channa argus exposed for 28 days with waterborne selenium (0, 50, 100, 200, and 400 µg/L). After 28 days, the order of Se accumulation in tissues was kidney > liver > spleen > intestine > gill > muscle. Antioxidant parameters in liver and spleen of C. argus evidenced an oxidative stress condition in waterborne selenium. In addition, immunological parameters and immune-related gene expression were all enhanced with an increase in Se expose levels. Our results suggest that waterborne Se exposure can induce considerable Se accumulation, oxidative stress and immunotoxic effects on C. argus.


Channa argus Selenium Bioaccumulation Oxidative stress Immune responses 



The research was supported by the National Natural Science Foundation of China (No. 31372540) and earmarked fund for Modern Agro-industry Technology Research System (CARS-46).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Gobi N, Vaseeharan B, Rekha R et al (2018) Bioaccumulation, cytotoxicity and oxidative stress of the acute exposure selenium in Oreochromis mossambicus. Ecotoxicol Environ Saf 162(8):147–159CrossRefPubMedGoogle Scholar
  2. 2.
    Lemly AD (2002) Selenium assessment in aquatic ecosystems. Springer 63(43):292–296Google Scholar
  3. 3.
    Pilonsmits EA (2012) Accumulation of selenium in Ulva sp. and effects on morphology, ultrastructure and antioxidant enzymes and metabolites. Aquat Toxicol 122–123(76):222–231Google Scholar
  4. 4.
    He JZ, Yang K, Sun PL (2012) The security analysis of trace elements accumulated in fish tissues with the aquatic eco-environment from fresh and marine waters. Adv Mater Res 343–344(5):900–908Google Scholar
  5. 5.
    Kim JH, Kang JC (2015) Oxidative stress, neurotoxicity, and non-specific immune responses in juvenile red sea bream, Pagrus major, exposed to different waterborne selenium concentrations. Chemosphere 135(45):46–52CrossRefPubMedGoogle Scholar
  6. 6.
    Plano D, Baquedano Y, Ibáñez E, Jiménez I et al (2010) Antioxidant-prooxidant properties of a new organoselenium compound library. Molecules 15(9):7292–7312CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang L, Zheng B, Meng WR (2007) Molecular biomarkers in aquatic organisms in relation to the oxidative stress imposed by environmental pollutants. Acta Ecol Sin 98(24):78–91Google Scholar
  8. 8.
    Nogueira L, Rodrigues ACF, Trídico CP et al (2011) Oxidative stress in Nile tilapia (Oreochromis niloticus) and armored catfish (Pterygoplichthys anisitsi) exposed to diesel oil. Environ Monit Assess 180(54):243–255CrossRefPubMedGoogle Scholar
  9. 9.
    Misra S, Niyogi S (2009) Selenite causes cytotoxicity in rainbow trout (Oncorhynchus mykiss) hepatocytes by inducing oxidative stress. Toxicol In Vitro 23(87):1249–1258CrossRefPubMedGoogle Scholar
  10. 10.
    Fairbrother A, Fowles J (1990) Subchronic effects of sodium selenite and selenomethionine on several immune-functions in mallards. Arch Environ Contam Toxicol 19(38):836–844CrossRefGoogle Scholar
  11. 11.
    Arkoosh MR, Casillas E, Clemons E et al (1991) Suppression of immunological memory in juvenile chinook salmon (Oncorhynchus tshawytscha) from an urban estuary. Fish Shellfish Immunol 1991(1):261–277CrossRefGoogle Scholar
  12. 12.
    Magnadóttir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20(46):137–138CrossRefPubMedGoogle Scholar
  13. 13.
    Ludwig K, Grabhorn E, Bitzan M et al (2002) Saliva IgM and IgA are a sensitive indicator of the humoral immune response to Escherichia coli O157 lipopolysaccharide in children with enteropathic hemolytic uremic syndrome. Pediatr Res 52(7):32–48Google Scholar
  14. 14.
    Hutchinson TH, Field MDR, Manning MJ (2003) Evaluation of non-specific immune functions in dab, Limanda limanda L., following short-term exposure to sediments contaminated with polyaromatic hydrocarbons and/or polychlorinated biphenyls. Mar Environ Res 55(67):193–202CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang CN, Zhang JL, Ren HT (2017) Effect of tributyltin on antioxidant ability and immune responses of zebrafish (Danio rerio). Ecotoxicol Environ Saf 138(6):1–8CrossRefPubMedGoogle Scholar
  16. 16.
    Yin Y, Zhang P, Yue X et al (2018) Effect of sub-chronic exposure to lead (Pb) and Bacillus subtilis on Carassius auratus gibelio: bioaccumulation, antioxidant responses and immune responses. Ecotoxicol Environ Saf 161:755–762CrossRefPubMedGoogle Scholar
  17. 17.
    Tsurufuji S, Sugio K, Takemasa F et al (1979) The role of glucocorticoid receptor and gene expression in the anti-inflammatory action of dexamethasone. Nature 280(67):408–409CrossRefPubMedGoogle Scholar
  18. 18.
    Garside H, Stevens A, Farrow S et al (2004) Glucocorticoid ligands specify different interactions with NF-kappaB by allosteric effects on the glucocorticoid receptor DNA binding domain. J Biol Chem 279(3):500–509Google Scholar
  19. 19.
    Moore PA, Ruben SM, Rosen CA (1993) Conservation of transcriptional activation functions of the NF-kappa B p50 and p65 subunits in mammalian cells and Saccharomyces cerevisiae. Mol Cell Biol 13:1666–1667CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gou C, Wang J, Wang Y et al (2018) Hericium caput-medusae (Bull.:Fr.) Pers. polysaccharide enhance innate immune response, immune-related genes expression and disease resistance against Aeromonas hydrophila in grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 72(5):604–605CrossRefPubMedGoogle Scholar
  21. 21.
    Valbona A, Mihallaq Q, Eldores S et al (2018) Antioxidant defense system, immune response and erythron profile modulation in gold fish, Carassius auratus, after acute manganese treatment. Fish Shellfish Immunol 76(81):178–189Google Scholar
  22. 22.
    Thophon S, Kruatrachue M, Upatham ES et al (2003) Histopathological alterations of white seabass, lates calcarifer, in acute and subchronic cadmium exposure. Environ Pollut 121:307–320CrossRefPubMedGoogle Scholar
  23. 23.
    Kim JH, Kang JC (2014) The selenium accumulation and its effect on growth, and haematological parameters in red sea bream, Pagrus major, exposed to waterborne selenium. Ecotoxicol Environ Saf 104:96–102CrossRefPubMedGoogle Scholar
  24. 24.
    Elia AC, Prearo M, Pacini N et al (2011) Effects of selenium diets on growth, accumulation and antioxidant response in juvenile carp. Ecotoxicol Environ Saf 74(87):166–173CrossRefPubMedGoogle Scholar
  25. 25.
    Karaytug S, Erdem C, Cicik B et al (2007) Accumulation of cadmium in the gill, liver, kidney, spleen, muscle and brain tissues of Cyprinus carpio. Ekoloji 16(88):16–22Google Scholar
  26. 26.
    Xu Y, Wang W (2002) Exposure and potential food chain transfer factor of Cd, Se and Zn in marine fish Lutjanus argentimaculatus. Mar Ecol Prog 238:173–186CrossRefGoogle Scholar
  27. 27.
    Yin Y, Yue X, Zhang D et al (2018) Study of bioaccumulation, hematological parameters, and antioxidant responses of Carassius auratus gibelio exposed to dietary lead and Bacillus subtilis. Biol Trace Elem Res 109(9):1–8Google Scholar
  28. 28.
    Zhang L, Wang WX (2007) Gastrointestinal uptake of cadmium and zinc by a marine teleost Acanthopagrus schlegeli. Aquat Toxicol 85(65):143–153CrossRefPubMedGoogle Scholar
  29. 29.
    Bainy ACD, Marques MRF (2003) Global analysis of biomarker responses in aquatic organisms exposed to contaminants. Comments Toxicol 9(58):271–278CrossRefGoogle Scholar
  30. 30.
    Studnicka M, Siwicki A (1990) The nonspecific immunological response in carp (Cyprinus carpio L.) during natural infection with Eimeria subepithelialis. Bamidgeh 42:18–21Google Scholar
  31. 31.
    Low KW, Sin YM (1998) Effects of mercuric chloride and sodium selenite on some immune responses of blue gourami, Trichogaster trichopterus (Pallus). Sci Total Environ 214(78):153–164CrossRefPubMedGoogle Scholar
  32. 32.
    Li M, Chen L, Qin JG et al (2013) Growth performance, antioxidant status and immune response in darkbarbel catfish Pelteobagrus vachelli fed different PUFA/vitamin E dietary levels and exposed to high or low ammonia. Aquaculture 406(47):18–27CrossRefGoogle Scholar
  33. 33.
    Orun I, Talas ZS, Ozdemir I et al (2008) Antioxidative role of selenium on some tissues of (Cd2+), Cr3+)-induced rainbow trout. Ecotoxicol Environ Saf 71:71–75CrossRefPubMedGoogle Scholar
  34. 34.
    Storey KB (1996) Oxidative stress: animal adaptations in nature. Braz J Med Biol Res 29:1715–1716PubMedGoogle Scholar
  35. 35.
    Baeuerle PA, Henkel T (1994) Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 12(87):141–142CrossRefPubMedGoogle Scholar
  36. 36.
    Li Z, Zhang DK, Yi WQ et al (2008) NF-κB p65 Antisense oligonucleotides may serve as a novel molecular approach for the treatment of patients with ulcerative colitis. Arch Med Res 39:729–734CrossRefPubMedGoogle Scholar
  37. 37.
    Neurath MF, Pettersson S (1997) Predominant role of NF-κB p65 in the pathogenesis of chronic intestinal inflammation. Immunobiology 198:91–92CrossRefPubMedGoogle Scholar
  38. 38.
    Chen XM, Guo GL, Sun L et al (2016) Effects of Ala-Gln feeding strategies on growth, metabolism, and crowding stress resistance of juvenile Cyprinus carpio var. Jian. Fish Shellfish Immunol 51(6):365–372CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
  2. 2.Jilin Provincial Key Laboratory of Animal Nutrition and Feed ScienceJilin Agricultural UniversityChangchunChina
  3. 3.Institute of Geographic Sciences and Natural Resources ResearchBeijingChina

Personalised recommendations