Advertisement

Molecular Biology Reports

, Volume 46, Issue 1, pp 1425–1446 | Cite as

Stem cell therapy in Alzheimer’s disease: possible benefits and limiting drawbacks

  • Masoume Alipour
  • Seyed Massood Nabavi
  • Leila Arab
  • Massoud Vosough
  • Hossein Pakdaman
  • Ehsan Ehsani
  • Koorosh ShahpasandEmail author
Review

Abstract

Alzheimer’s disease (AD) is the sixth leading cause of death globally and the main reason for dementia in elderly people. AD is a long-term and progressive neurodegenerative disorder that steadily worsens memory and communicating skills eventually leads to a disabled person of performing simple daily tasks. Unfortunately, numerous clinical trials exploring new therapeutic drugs have encountered disappointing outcomes in terms of improved cognitive performance since they are not capable of halting or stimulating the regeneration of already-damaged neural cells, and merely provide symptomatic relief. Therefore, a deeper understanding of the mechanism of action of stem cell may contribute to the development of novel and effective therapies. The revolutionary discovery of stem cells has cast a new hope for the development of disease-modifying treatments for AD, in terms of their potency in the replenishment of lost cells via differentiating towards specific lineages, stimulating in situ neurogenesis, and delivering the therapeutic agents to the brain. Herein, firstly, we explore the pathophysiology of AD. Next, we summarize the most recent preclinical stem cell reports designed for AD treatment, their benefits and outcomes according to cell type. We briefly review relevant clinical trials and their potential clinical applications in order to find a unique solution to effectively relieve the patients’ pain.

Keywords

Alzheimer’s disease Neurodegenerative disorders Stem cell therapy 

Notes

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Ager RR, Davis JL, Agazaryan A, Benavente F, Poon WW, LaFerla FM, Blurton-Jones M (2015) Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer’s disease and neuronal loss. Hippocampus 25(7):813–826Google Scholar
  2. 2.
    Ahmed NE-MB, Murakami M, Hirose Y, Nakashima M (2016) Therapeutic potential of dental pulp stem cell secretome for Alzheimer’s disease treatment: an in vitro study. Stem cells international.  https://doi.org/10.1155/2016/8102478 Google Scholar
  3. 3.
    Aliaghaei A, Digaleh H, Khodagholi F, Ahmadiani A (2015) Encapsulated choroid plexus epithelial cells actively protect against intrahippocampal aβ-induced long-term memory dysfunction; upregulation of effective neurogenesis with the abrogated apoptosis and neuroinflammation. J Mol Neurosci 56(3):708–721Google Scholar
  4. 4.
    Alipour F, Mohammadzadeh E, Khallaghi B (2014) Evaluation of apoptosis in rat hippocampal tissue in an experimental model of alzheimer’s disease. Neurosci J Shefaye Khatam 2:13–20Google Scholar
  5. 5.
    Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341Google Scholar
  6. 6.
    Antequera D, Portero A, Bolos M, Orive G, Hernández RM, Pedraz JL, Carro E (2012) Encapsulated VEGF-secreting cells enhance proliferation of neuronal progenitors in the hippocampus of AβPP/Ps1 mice. J Alzheimer’s Dis 29(1):187–200Google Scholar
  7. 7.
    Association As (2017) 2017 Alzheimer’s disease facts and figures. Alzheimer’s Dement 13(4):325–373Google Scholar
  8. 8.
    Balez R, Steiner N, Engel M, Munoz SS, Lum JS, Wu Y, Ooi L (2016) Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Sci Rep 6:31450.  https://doi.org/10.1038/srep31450 Google Scholar
  9. 9.
    Ben-Menachem-Zidon O, Ben-Menahem Y, Ben-Hur T, Yirmiya R (2014) Intra-hippocampal transplantation of neural precursor cells with transgenic over-expression of IL-1 receptor antagonist rescues memory and neurogenesis impairments in an Alzheimer’s disease model. Neuropsychopharmacology 39(2):411Google Scholar
  10. 10.
    Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2(4):313–319Google Scholar
  11. 11.
    Bissonnette CJ, Lyass L, Bhattacharyya BJ, Belmadani A, Miller RJ, Kessler JA (2011) The controlled generation of functional basal forebrain cholinergic neurons from human embryonic stem cells. Stem cells 29(5):802–811Google Scholar
  12. 12.
    Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Müller F-J, Loring JF, LaFerla FM (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Nat Acad Sci.  https://doi.org/10.1073/pnas.0901402106 Google Scholar
  13. 13.
    Blurton-Jones M, Spencer B, Michael S, Castello NA, Agazaryan AA, Davis JL, LaFerla FM (2014) Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models. Stem Cell Res Ther 5(2):46.  https://doi.org/10.1186/scrt440 Google Scholar
  14. 14.
    Brookhouser N, Raman S, Potts C, Brafman DA (2017) May I cut in? Gene editing approaches in human induced pluripotent stem cells. Cells 6(1):5Google Scholar
  15. 15.
    Burke RM, Norman TA, Haydar TF, Slack BE, Leeman SE, Blusztajn JK, Mellott TJ (2013) BMP9 ameliorates amyloidosis and the cholinergic defect in a mouse model of Alzheimer’s disease. Proc Nat Acad Sci 110(48):19567–19572Google Scholar
  16. 16.
    Cao P, Mooney R, Tirughana R, Abidi W, Aramburo S, Flores L, Tiet P (2017) Intraperitoneal administration of neural stem cell-nanoparticle conjugates targets chemotherapy to ovarian tumors. Bioconjug Chem 28(6):1767–1776Google Scholar
  17. 17.
    Capsoni S, Marinelli S, Ceci M, Vignone D, Amato G, Malerba F, Pavone F (2012) Intranasal “painless” human nerve growth factors slows amyloid neurodegeneration and prevents memory deficits in App X PS1 mice. PLoS ONE 7(5):e37555Google Scholar
  18. 18.
    Carlson AL, Bennett NK, Francis NL, Halikere A, Clarke S, Moore JC, Kohn J (2016) Generation and transplantation of reprogrammed human neurons in the brain using 3D microtopographic scaffolds. Nat Commun 7:10862Google Scholar
  19. 19.
    Cassar P, Blundell R (2016) The use of umbilical stem cells. Open J Pathol 6(01):41Google Scholar
  20. 20.
    Cevik B, Solmaz V, Yigitturk G, Cavusoğlu T, Peker G, Erbas O (2017) Neuroprotective effects of erythropoietin on Alzheimer’s dementia model in rats. Adv Clin Exp Med 26(1):23–29Google Scholar
  21. 21.
    Cha MY, Kwon YW, Ahn HS, Jeong H, Lee YY, Moon M, Yi EC (2017) Protein-induced pluripotent stem cells ameliorate cognitive dysfunction and reduce Aβ deposition in a mouse model of Alzheimer’s disease. Stem Cells Transl Med 6(1):293–305Google Scholar
  22. 22.
    Chen Y, Pan C, Xuan A, Xu L, Bao G, Liu F, Fang J, Long D (2015) Treatment efficacy of NGF nanoparticles combining neural stem cell transplantation on Alzheimer’s disease model rats. Med Sci Monit Int Med J Exo Clin Res 21:3608Google Scholar
  23. 23.
    Chen S, Yao J, Wong K, Brinton RD (2017) Impact of allopregnanolone on neural differentiation: development of a regenerative therapeutic for alzheimer’s disease. Alzheimer’s Dement J Alzheimer’s Assoc 13(7):P675Google Scholar
  24. 24.
    Cheng Y, Morshed R, Cheng SH, Tobias A, Auffinger B, Wainwright DA, Chen CT (2013) Nanoparticle-programmed self-destructive neural stem cells for glioblastoma targeting and therapy. Small 9(24):4123–4129Google Scholar
  25. 25.
    Choi JI, Cho HT, Jee MK, Kang SK (2013) Core-shell nanoparticle controlled hATSCs neurogenesis for neuropathic pain therapy. Biomaterials 34(21):4956–4970Google Scholar
  26. 26.
    Colpo GD, Ascoli BM, Wollenhaupt-Aguiar B, Pfaffenseller B, Silva EG, Cirne-Lima EO, Rosa AR (2015) Mesenchymal stem cells for the treatment of neurodegenerative and psychiatric disorders. Anais da Acad Bras de Ciênc 87(2):1435–1449Google Scholar
  27. 27.
    Cui G-h, Shao S-j, Yang J-j, Liu J-r, Guo H-d (2016) Designer self-assemble peptides maximize the therapeutic benefits of neural stem cell transplantation for Alzheimer’s disease via enhancing neuron differentiation and paracrine action. Mol Neurobiol 53(2):1108–1123Google Scholar
  28. 28.
    Cui Y, Ma S, Zhang C, Cao W, Liu M, Li D, Yao N (2017) Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer’s disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behav Brain Res 320:291–301Google Scholar
  29. 29.
    Diniz BS, Teixeira AL (2011) Brain-derived neurotrophic factor and Alzheimer’s disease: physiopathology and beyond. Neuromol Med 13(4):217–222Google Scholar
  30. 30.
    Eamegdool SS, Weible IIMW, Pham BT, Hawkett BS, Grieve SM, Chan-ling T (2014) Ultrasmall superparamagnetic iron oxide nanoparticle prelabelling of human neural precursor cells. Biomaterials 35(21):5549–5564Google Scholar
  31. 31.
    Eckert A, Huang L, Gonzalez R, Kim HS, Hamblin MH, Lee JP (2015) Bystander effect fuels human induced pluripotent stem cell-derived neural stem cells to quickly attenuate early stage neurological deficits after stroke. Stem Cells Transl Med 4(7):841–851.  https://doi.org/10.5966/sctm.2014-0184 Google Scholar
  32. 32.
    Elias PZ, Spector M (2012) Implantation of a collagen scaffold seeded with adult rat hippocampal progenitors in a rat model of penetrating brain injury. J Neurosci Methods 209(1):199–211Google Scholar
  33. 33.
    Eriksdotter-Jönhagen M, Linderoth B, Lind G, Aladellie L, Almkvist O, Andreasen N, Kadir A (2012) Encapsulated cell biodelivery of nerve growth factor to the basal forebrain in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 33(1):18–28Google Scholar
  34. 34.
    Eyjolfsdottir H, Eriksdotter M, Linderoth B, Lind G, Juliusson B, Kusk P, Ferreira D (2016) Targeted delivery of nerve growth factor to the cholinergic basal forebrain of Alzheimer’s disease patients: application of a second-generation encapsulated cell biodelivery device. Alzheimer’s Res Ther 8(1):30Google Scholar
  35. 35.
    Fagan AM, Xiong C, Jasielec MS, Bateman RJ, Goate AM, Benzinger TL, Mayeux R (2014) Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease. Sci Transl Med 6(226):226ra230Google Scholar
  36. 36.
    Fang Y, Gao T, Zhang B, Pu J (2018) Recent advances: decoding alzheimer’s disease with stem cells. Front Aging Neurosci 10:77Google Scholar
  37. 37.
    Fu Q-Q, Wei L, Sierra J, Cheng J-Z, Moreno-Flores MT, You H, Yu H-R (2017) Olfactory ensheathing cell-conditioned medium reverts Aβ25-35-induced oxidative damage in SH-SY5Y cells by modulating the mitochondria-mediated apoptotic pathway. Cell Mol Neurobiol 37(6):1043–1054Google Scholar
  38. 38.
    Fujioka K, Hanada S, Inoue Y, Sato K, Hirakuri K, Shiraishi K, Yamamoto K (2014) Effects of silica and titanium oxide particles on a human neural stem cell line: morphology, mitochondrial activity, and gene expression of differentiation markers. Int J Mol Sci 15(7):11742–11759Google Scholar
  39. 39.
    Fujiwara N, Shimizu J, Takai K, Arimitsu N, Saito A, Kono T, Suzuki N (2013) Restoration of spatial memory dysfunction of human APP transgenic mice by transplantation of neuronal precursors derived from human iPS cells. Neurosci Lett.  https://doi.org/10.1016/j.neulet.2013.10.043 Google Scholar
  40. 40.
    Garcia P, Youssef I, Utvik JK, Florent-Béchard S, Barthélémy V, Malaplate-Armand C, Olivier J-L (2010) Ciliary neurotrophic factor cell-based delivery prevents synaptic impairment and improves memory in mouse models of Alzheimer’s disease. J Neurosci 30(22):7516–7527Google Scholar
  41. 41.
    Garcia KdO, Ornellas FL, Matsumoto P, Patti CdL, Mello LE, Frussa-Filho R, Longo BM (2014) Therapeutic effects of the transplantation of VEGF overexpressing bone marrow mesenchymal stem cells in the hippocampus of murine model of Alzheimer’s disease. Front Aging Neurosci 6:30Google Scholar
  42. 42.
    Gu G, Zhang W, Li M, Ni J, Wang P (2015) Transplantation of NSC-derived cholinergic neuron-like cells improves cognitive function in APP/PS1 transgenic mice. Neuroscience 291:81–92Google Scholar
  43. 43.
    Guan J, Zhu Z, Zhao RC, Xiao Z, Wu C, Han Q, Han Q (2013) Transplantation of human mesenchymal stem cells loaded on collagen scaffolds for the treatment of traumatic brain injury in rats. Biomaterials 34(24):5937–5946Google Scholar
  44. 44.
    Guérout N, Paviot A, Bon-Mardion N, Duclos C, Genty D, Jean L, Marie J-P (2011) Co-transplantation of olfactory ensheathing cells from mucosa and bulb origin enhances functional recovery after peripheral nerve lesion. PLoS ONE 6(8):e22816Google Scholar
  45. 45.
    Guo JL, Lee VM (2014) Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med 20(2):130Google Scholar
  46. 46.
    Gurney KJ, Estrada EY, Rosenberg GA (2006) Blood–brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis 23(1):87–96Google Scholar
  47. 47.
    Hampton DW, Webber DJ, Bilican B, Goedert M, Spillantini MG, Chandran S (2010) Cell-mediated neuroprotection in a mouse model of human tauopathy. J Neurosci 30(30):9973–9983Google Scholar
  48. 48.
    Han C, Sun X, Liu L, Jiang H, Shen Y, Xu X, Lin Z (2016) Exosomes and their therapeutic potentials of stem cells. Stem Cells Int.  https://doi.org/10.1155/2016/7653489 Google Scholar
  49. 49.
    Harach T, Jammes F, Muller C, Duthilleul N, Cheatham V, Zufferey V, Bolmont T (2017) Administrations of human adult ischemia-tolerant mesenchymal stem cells and factors reduce amyloid beta pathology in a mouse model of Alzheimer’s disease. Neurobiology of aging 51:83–96Google Scholar
  50. 50.
    Hassouna I, Ott C, Wüstefeld L, Offen N, Neher RA, Mitkovski M, Goebbels S (2016) Revisiting adult neurogenesis and the role of erythropoietin for neuronal and oligodendroglial differentiation in the hippocampus. Mol Psychiatr 21(12):1752Google Scholar
  51. 51.
    Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR (2009) Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2(3):198–210.  https://doi.org/10.1016/j.scr.2009.02.002 Google Scholar
  52. 52.
    Herrán E, Pérez-González R, Igartua M, Pedraz JL, Carro E, Hernández RM (2013) VEGF-releasing biodegradable nanospheres administered by craniotomy: a novel therapeutic approach in the APP/Ps1 mouse model of Alzheimer’s disease. J Control Release 170(1):111–119Google Scholar
  53. 53.
    Horii A, Wang X, Gelain F, Zhang S (2007) Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS ONE 2(2):e190Google Scholar
  54. 54.
    Hoveizi E, Mohammadi T, Moazedi AA, Zamani N, Eskandary A (2018) Transplanted neural-like cells improve memory and Alzheimer-like pathology in a rat model. Cytotherapy 20:964–973Google Scholar
  55. 55.
    Jindal H, Bhatt B, Sk S, Singh Malik J (2014) Alzheimer disease immunotherapeutics: then and now. Human vaccines immunotherapeutics 10(9):2741–2743Google Scholar
  56. 56.
    Kantorovich S, Astary GW, Green C, Zheng T, Semple-Rowland SL, Steindler DA, Borchelt DR (2012) A preclinical assessment of neural stem cells as delivery vehicles for anti-amyloid therapeutics. PLoS ONE 7(4):e34097Google Scholar
  57. 57.
    Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, Oki K, Ochiya T (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 3:1197.  https://doi.org/10.1038/srep01197 Google Scholar
  58. 58.
    Khodanovich M, Kisel A, Kudabaeva M, Chernysheva G, Smolyakova V, Krutenkova E, Yarnykh V (2018) Effects of fluoxetine on hippocampal neurogenesis and neuroprotection in the model of global cerebral ischemia in rats. Int J Mol Sci 19(1):162Google Scholar
  59. 59.
    Kim J, Kim D, Kim J, Lee D, Jeon H, Kwon S, Choi S (2012) Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-β plaques. Cell Death Differ 19(4):680Google Scholar
  60. 60.
    Kim S, Chang K-A, Park H-G, Ra JC, Kim H-S, Suh Y-H (2012) The preventive and therapeutic effects of intravenous human adipose-derived stem cells in Alzheimer’s disease mice. PLoS ONE 7(9):e45757Google Scholar
  61. 61.
    Kim K-S, Kim HS, Park J-M, Kim HW, Park M-k, Lee H-S, Moon J (2013) Long-term immunomodulatory effect of amniotic stem cells in an Alzheimer’s disease model. Neurobiol Aging 34(10):2408–2420Google Scholar
  62. 62.
    Kim J, Ha S, Shin K, Kim S, Lee K, Chong Y, Suh Y (2015) Neural stem cell transplantation at critical period improves learning and memory through restoring synaptic impairment in Alzheimer’s disease mouse model. Cell Death Dis 6(6):e1789Google Scholar
  63. 63.
    Kim DH, Lee D, Chang EH, Kim JH, Hwang JW, Kim J-Y, Shim SM (2015) GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an Alzheimer’s disease model. Stem Cells Develop 24(20):2378–2390Google Scholar
  64. 64.
    Kim HJ, Seo SW, Chang JW, Lee JI, Kim CH, Chin J, Na DL (2015) Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patientswith Alzheimer’s disease dementia: a phase 1 clinical trial. Alzheimer’s Dement 1:95–102Google Scholar
  65. 65.
    Kim D-S, Jung SJ, Lee JS, Lim BY, Kim HA, Yoo J-E, Leem JW (2017) Rapid generation of OPC-like cells from human pluripotent stem cells for treating spinal cord injury. Exp Mol Med 49(7):e361Google Scholar
  66. 66.
    Klinge PM, Harmening K, Miller MC, Heile A, Wallrapp C, Geigle P, Brinker T (2011) Encapsulated native and glucagon-like peptide-1 transfected human mesenchymal stem cells in a transgenic mouse model of Alzheimer's disease. Neurosci Lett 497(1):6–10Google Scholar
  67. 67.
    Konala VBR, Mamidi MK, Bhonde R, Das AK, Pochampally R, Pal R (2016) The current landscape of the mesenchymal stromal cell secretome: a new paradigm for cell-free regeneration. Cytotherapy 18(1):13–24Google Scholar
  68. 68.
    Kondo A, Shahpasand K, Mannix R, Qiu J, Moncaster J, Chen C-H, Sun Y (2015) Cis p-tau: early driver of brain injury and tauopathy blocked by antibody. Nature 523(7561):431Google Scholar
  69. 69.
    Kumar V, Jahan S, Singh S, Khanna V, Pant A (2015) Progress toward the development of in vitro model system for chemical-induced developmental neurotoxicity: potential applicability of stem cells. Arch Toxicol 89(2):265–267Google Scholar
  70. 70.
    Lee HJ, Lee JK, Lee H, Carter JE, Chang JW, Oh W, Jin HK (2012) Human umbilical cord blood-derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer’s disease mouse model through modulation of neuroinflammation. Neurobiol Aging 33(3):588–602Google Scholar
  71. 71.
    Lee HJ, Lim IJ, Park SW, Kim YB, Ko Y, Kim SU (2012) Human neural stem cells genetically modified to express human nerve growth factor (NGF) gene restore cognition in the mouse with ibotenic acid-induced cognitive dysfunction. Cell transplant 21(11):2487–2496Google Scholar
  72. 72.
    Lee JK, Jin HK, Endo S, Schuchman EH, Carter JE, Bae J (2010) Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses. Stem Cells 28(2):329–343Google Scholar
  73. 73.
    Lee I-S, Jung K, Kim I-S, Lee H, Kim M, Yun S, Park KI (2015) Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener 10(1):38Google Scholar
  74. 74.
    Lee H-K, Morin P, Wells J, Hanlon EB, Xia W (2015) Induced pluripotent stem cells (iPSCs) derived from frontotemporal dementia patient’s peripheral blood mononuclear cells. Stem Cell Res 15(2):325–327Google Scholar
  75. 75.
    Li Q, Chau Y (2010) Neural differentiation directed by self-assembling peptide scaffolds presenting laminin-derived epitopes. J Biomed Mater Res A 94(3):688–699Google Scholar
  76. 76.
    Li Y-C, Liao Y-T, Chang H-H, Young T-H (2013) Covalent bonding of GYIGSR to EVAL membrane surface to improve migration and adhesion of cultured neural stem/precursor cells. Colloids Surf B 102:53–62Google Scholar
  77. 77.
    Li W, Li K, Gao J, Yang Z (2018) Autophagy is required for human umbilical cord mesenchymal stem cells to improve spatial working memory in APP/PS1 transgenic mouse model. Stem Cell Res Ther 9(1):9Google Scholar
  78. 78.
    Liedmann A, Frech S, Morgan PJ, Rolfs A, Frech MJ (2012) Differentiation of human neural progenitor cells in functionalized hydrogel matrices. BioRes Open Access 1(1):16–24Google Scholar
  79. 79.
    Lilja AM, Malmsten L, Röjdner J, Voytenko L, Verkhratsky A, Ögren SO, Marutle A (2015) Neural stem cell transplant-induced effect on neurogenesis and cognition in Alzheimer Tg2576 mice is inhibited by concomitant treatment with amyloid-lowering or cholinergic 7 nicotinic receptor drugs. Neural Plast.  https://doi.org/10.1155/2015/370432 Google Scholar
  80. 80.
    Liu Y, Weick JP, Liu H, Krencik R, Zhang X, Ma L, Zhang SC (2013) Medial ganglionic eminence-like cells derived from human embryonic stem cells correct learning and memory deficits. Nat Biotechnol 31(5):440–447.  https://doi.org/10.1038/nbt.2565 Google Scholar
  81. 81.
    Ma OK-F, Chan KH (2016) Immunomodulation by mesenchymal stem cells: interplay between mesenchymal stem cells and regulatory lymphocytes. World J Stem Cells 8(9):268Google Scholar
  82. 82.
    Ma T, Gong K, Ao Q, Yan Y, Song B, Huang H, Gong Y (2013) Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer’s disease mice. Cell transpl 22(1):S113–S126Google Scholar
  83. 83.
    Marei HE, Farag A, Althani A, Afifi N, Abd-Elmaksoud A, Lashen S, Cenciarelli C (2015) Human olfactory bulb neural stem cells expressing hNGF restore cognitive deficit in Alzheimer’s disease rat model. J Cell Physiol 230(1):116–130Google Scholar
  84. 84.
    Marfia G, Navone SE, Hadi LA, Paroni M, Berno V, Beretta M, Gualtierotti R, Ingegnoli F, Levi V, Miozzo M, Geginat J, Fassina L, Rampini P, Tremolada C, Riboni L, Campanella R (2016) The adipose mesenchymal stem cell secretome inhibits inflammatory responses of microglia: evidence for an involvement of sphingosine-1-phosphate signalling. Stem Cells Dev 25(14):1095–1107Google Scholar
  85. 85.
    McGinley LM, Sims E, Lunn JS, Kashlan ON, Chen KS, Bruno ES, Sakowski SA (2016) Human cortical neural stem cells expressing insulin-like growth factor-I: a novel cellular therapy for Alzheimer’s Disease. Stem Cells Transl Med 5(3):379–391Google Scholar
  86. 86.
    McGinley LM, Kashlan ON, Chen KS, Bruno ES, Hayes JM, Backus C, Feldman EL (2017) Human neural stem cell transplantation into the corpus callosum of Alzheimer’s mice. Ann Clin Transl Neurol 4(10):749–755Google Scholar
  87. 87.
    Mellott TJ, Pender SM, Burke RM, Langley EA, Blusztajn JK (2014) IGF2 ameliorates amyloidosis, increases cholinergic marker expression and raises BMP9 and neurotrophin levels in the hippocampus of the APPswePS1dE9 Alzheimer’s disease model mice. PLoS ONE 9(4):e94287Google Scholar
  88. 88.
    Misra S, Chopra K, Saikia UN, Sinha VR, Sehgal R, Modi M, Medhi B (2016) Effect of mesenchymal stem cells and galantamine nanoparticles in rat model of Alzheimer’s disease. Regen Med 11(7):629–646Google Scholar
  89. 89.
    Moghadam FH, Alaie H, Karbalaie K, Tanhaei S, Esfahani MHN, Baharvand H (2009) Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats. Differentiation 78(2–3):59–68Google Scholar
  90. 90.
    Mooney R, Weng Y, Tirughana-Sambandan R, Valenzuela V, Aramburo S, Garcia E, Li Z, Gutova M, Annala AJ, Berlin JM, Aboody KS (2014) Neural stem cells improve intracranial nanoparticle retention and tumor-selective distribution. Future Oncol 10(3):401–415Google Scholar
  91. 91.
    Muratore CR, Rice HC, Srikanth P, Callahan DG, Shin T, Benjamin LN, Young-Pearse TL (2014) The familial Alzheimer’s disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum Mol Genet 23(13):3523–3536Google Scholar
  92. 92.
    Naaldijk Y, Jaeger C, Fabian C, Leovsky C, Blüher A, Rudolph L, Stolzing A (2017) Effect of systemic transplantation of bone marrow-derived mesenchymal stem cells on neuropathology markers in APP/PS 1 Alzheimer mice. Neuropathol Appl Neurobiol 43(4):299–314Google Scholar
  93. 93.
    Ni W-F, Yin L-H, Lu J, Xu H-Z, Chi Y-L, Wu J-B, Zhang N (2010) In vitro neural differentiation of bone marrow stromal cells induced by cocultured olfactory ensheathing cells. Neurosci Lett 475(2):99–103Google Scholar
  94. 94.
    Oh SH, Kim HN, Park H-J, Shin JY, Lee PH (2015) Mesenchymal stem cells increase hippocampal neurogenesis and neuronal differentiation by enhancing the Wnt signaling pathway in an Alzheimer’s disease model. Cell Transpl 24(6):1097–1109Google Scholar
  95. 95.
    ON K (2014) Oral presentation titled “Peri-hippocampal stem cell transplantation rescues cognitive decline in Alzheimer’s disease”. Congress of Neurological Surgeons Annual Meeting, BostonGoogle Scholar
  96. 96.
    Park D, Lee HJ, Joo SS, Bae DK, Yang G, Yang YH, Kim SU (2012) Human neural stem cells over-expressing choline acetyltransferase restore cognition in rat model of cognitive dysfunction. Exp Neurol 234(2):521–526.  https://doi.org/10.1016/j.expneurol.2011.12.040 Google Scholar
  97. 97.
    Park D, Joo SS, Kim TK, Lee SH, Kang H, Lee HJ, Lim I, Matsuo A, Tooyama I, Kim YB, Kim SU (2012) Human Neural Stem Cells Overexpressing CholineAcetyltransferase Restore Cognitive Function of Kainic Acid-Induced Learning and Memory Deficit Animals. Cell Transplant 21(1):365–371Google Scholar
  98. 98.
    Park D, Yang G, Bae DK, Lee SH, Yang YH, Kyung J, Kim YB (2013) Human adipose tissue-derived mesenchymal stem cells improve cognitive function and physical activity in ageing mice. J Neurosci Res 91(5):660–670.  https://doi.org/10.1002/jnr.23182 Google Scholar
  99. 99.
    Park HJ, Shin JY, Kim HN, Oh SH, Song SK, Lee PH (2015) Mesenchymal stem cells stabilize the blood–brain barrier through regulation of astrocytes. Stem Cell Res Ther 6(1):187Google Scholar
  100. 100.
    Park SE, Lee NK, Lee J, Hwang JW, Choi SJ, Hwang H, Na DL (2016) Distribution of human umbilical cord blood-derived mesenchymal stem cells in the Alzheimer’s disease transgenic mouse after a single intravenous injection. Neuroreport 27(4):235–241Google Scholar
  101. 101.
    Paull D, Sevilla A, Zhou H, Hahn AK, Kim H, Napolitano C, Jagadeesan P (2015) Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells. Nat Methods 12(9):885Google Scholar
  102. 102.
    Ratajczak MZ, Jadczyk T, Pędziwiatr D, Wojakowski W (2014) New advances in stem cell research: practical implications for regenerative medicine. Pol Arch Med Wewn 124(7–8):417–426Google Scholar
  103. 103.
    Rockenstein E, Desplats P, Ubhi K, Mante M, Florio J, Adame A, Masliah E (2015) Neuro-peptide treatment with cerebrolysin improves the survival of neural stem cell grafts in an APP transgenic model of Alzheimer disease. Stem Cell Res 15(1):54–67Google Scholar
  104. 104.
    Ross CA, Akimov SS (2014) Human-induced pluripotent stem cells: potential for neurodegenerative diseases. Hum Mol Genet 23(R1):R17–R26Google Scholar
  105. 105.
    Ruzicka J, Kulijewicz-Nawrot M, Rodrigez-Arellano JJ, Jendelova P, Sykova E (2016) Mesenchymal stem cells preserve working memory in the 3xTg-AD mouse model of Alzheimer’s disease. Int J Mol Sci 17(2):152Google Scholar
  106. 106.
    Sachs BD, Caron MG (2015) Chronic fluoxetine increases extra-hippocampal neurogenesis in adult mice. Int J Neuropsychopharmacol.  https://doi.org/10.1093/ijnp/pyu029 Google Scholar
  107. 107.
    Salem AM, Ahmed HH, Atta HM, Ghazy MA, Aglan HA (2014) Potential of bone marrow mesenchymal stem cells in management of Alzheimer’s disease in female rats. Cell Biol Int 38(12):1367–1383Google Scholar
  108. 108.
    Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Ferris S, Reichert M, Ketter N, Nejadnik B, Guenzler V, Miloslavsky M, Wang D, Lu Y, Lull J, Tudor IC, Liu E, Grundman M, Yuen E, Black R, Brashear HR (2014) Two Phase 3 Trials of Bapineuzumab in Mild-to-Moderate Alzheimer’s Disease. New England Journal of Medicine 370(4):322–333Google Scholar
  109. 109.
    Sandrof M, Emerich D, Thanos CG (2017) Primary choroid plexus tissue for use in cellular therapy cell microencapsulation. In: Opara E (ed) Cell microencapsulation. methods in molecular biology. Humana Press, New York, pp 237–249Google Scholar
  110. 110.
    Sato YT, Umezaki K, Sawada S, Mukai S-a, Sasaki Y, Harada N, Akiyoshi K (2016) Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep 6:21933Google Scholar
  111. 111.
    Shi Y, Liu J-P (2011) Gdf11 facilitates temporal progression of neurogenesis in the developing spinal cord. J Neurosci 31(3):883–893Google Scholar
  112. 112.
    Shin JW, Lee JK, Lee JE, Min WK, Schuchman EH, Jin HK, Bae J (2011) Combined effects of hematopoietic progenitor cell mobilization from bone marrow by granulocyte colony stimulating factor and AMD3100 and chemotaxis into the brain using stromal cell-derived factor-1α in an alzheimer’s disease mouse model. Stem Cells 29(7):1075–1089Google Scholar
  113. 113.
    Shin JY, Park HJ, Kim HN, Oh SH, Bae J-S, Ha H-J, Lee PH (2014) Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy 10(1):32–44Google Scholar
  114. 114.
    Sibov TT, Pavon LF, Miyaki LA, Mamani JB, Nucci LP, Alvarim LT, Gamarra L (2014) Umbilical cord mesenchymal stem cells labeled with multimodal iron oxide nanoparticles with fluorescent and magnetic properties: application for in vivo cell tracking. Int J Nanomed 9:337Google Scholar
  115. 115.
    Somaa FA, Wang TY, Niclis JC, Bruggeman KF, Kauhausen JA, Guo H, Thompson LH (2017) Peptide-based scaffolds support human cortical progenitor graft integration to reduce atrophy and promote functional repair in a model of stroke. Cell Rep 20(8):1964–1977Google Scholar
  116. 116.
    Spuch C, Antequera D, Portero A, Orive G, Hernández RM, Molina JA, Carro E (2010) The effect of encapsulated VEGF-secreting cells on brain amyloid load and behavioral impairment in a mouse model of Alzheimer’s disease. Biomaterials 31(21):5608–5618Google Scholar
  117. 117.
    Stephanopoulos N, Freeman R, North HA, Sur S, Jeong SJ, Tantakitti F, Stupp SI (2014) Bioactive DNA-peptide nanotubes enhance the differentiation of neural stem cells into neurons. Nano Lett 15(1):603–609Google Scholar
  118. 118.
    Takamatsu K, Ikeda T, Haruta M, Matsumura K, Ogi Y, Nakagata N, Senju S (2014) Degradation of amyloid beta by human induced pluripotent stem cell-derived macrophages expressing Neprilysin-2. Stem Cell Res 13(3):442–453Google Scholar
  119. 119.
    Tincer G, Mashkaryan V, Bhattarai P, Kizil C (2016) Focus: the aging brain: neural stem/progenitor cells in Alzheimer’s disease. Yale J Biol Med 89(1):23Google Scholar
  120. 120.
    Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P, Patel DK (2013) Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 8(1):76–103Google Scholar
  121. 121.
    Tolosa L, Pareja E, Gómez-Lechón MJ (2016) Clinical application of pluripotent stem cells: an alternative cell-based therapy for treating liver diseases? Transplantation 100(12):2548–2557Google Scholar
  122. 122.
    Tong LM, Djukic B, Arnold C, Gillespie AK, Yoon SY, Wang MM, Alvarez-Buylla A (2014) Inhibitory interneuron progenitor transplantation restores normal learning and memory in ApoE4 knock-in mice without or with Aβ accumulation. J Neurosci 34(29):9506–9515Google Scholar
  123. 123.
    Tuszynski MH, Yang JH, Barba D, Hoi-Sang U, Bakay RA, Pay MM, Roy S (2015) Nerve growth factor gene therapy: activation of neuronal responses in Alzheimer disease. JAMA Neurol 72(10):1139–1147Google Scholar
  124. 124.
    Wang S-S, Jia J, Wang Z (2018) Mesenchymal stem cell-derived extracellular vesicles suppresses iNOS expression and ameliorates neural impairment in alzheimer’s disease mice. J Alzheimer’s Dis 61:1–9Google Scholar
  125. 125.
    Wang H, Nagai A, Sheikh AM, Liang XY, Yano S, Mitaki S, Yamaguchi S (2013) Human mesenchymal stem cell transplantation changes proinflammatory gene expression through a nuclear factor-κB-dependent pathway in a rat focal cerebral ischemic model. J Neurosci Res 91(11):1440–1449Google Scholar
  126. 126.
    Wang X, Ma S, Yang B, Huang T, Meng N, Xu L, Li Q (2018) Resveratrol promotes hUC-MSCs engraftment and neural repair in a mouse model of Alzheimer’s disease. Behav Brain Res 339:297–304Google Scholar
  127. 127.
    Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, Feldman H (2016) Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol 15(5):455–532Google Scholar
  128. 128.
    Wu S, Sasaki A, Yoshimoto R, Kawahara Y, Manabe T, Kataoka K, Yuge L (2008) Neural stem cells improve learning and memory in rats with Alzheimer’s disease. Pathobiology 75(3):186–194Google Scholar
  129. 129.
    Wu CC, Lien CC, Hou WH, Chiang PM, Tsai KJ (2016) Gain of BDNF function in engrafted neural stem cells promotes the therapeutic potential for Alzheimer’s disease. Sci Rep 6:27358Google Scholar
  130. 130.
    Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, Chopp M (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30(7):1556–1564Google Scholar
  131. 131.
    Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y, Chopp M (2013) MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells 31(12):2737–2746Google Scholar
  132. 132.
    Xiong N, Dong X-Y, Zheng J, Liu F-F, Sun Y (2015) Design of LVFFARK and LVFFARK-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity. ACS Appl Mater Interfaces 7(10):5650–5662Google Scholar
  133. 133.
    Yang H, Xie ZH, Wei LF, Yang HN, Yang SN, Zhu ZY, Bi JZ (2013) Human umbilical cord mesenchymal stem cell-derived neuron-like cells rescue memory deficits and reduce amyloid-beta deposition in an AβPP/PS1 transgenic mouse model. Stem Cell Res Ther 4(4):76Google Scholar
  134. 134.
    Yang H, Yang H, Xie Z, Wei L, Bi J (2013) Systemic transplantation of human umbilical cord derived mesenchymal stem cells-educated T regulatory cells improved the impaired cognition in AβPPswe/PS1dE9 transgenic mice. PLoS ONE 8(7):e69129Google Scholar
  135. 135.
    Yang H, Yang H, Xie Z, Wang P, Bi J (2015) Self-assembling nanofibers alter the processing of amyloid precursor protein in a transgenic mouse model of Alzheimer’s disease. Neurol Res 37(1):84–91Google Scholar
  136. 136.
    Yousef H, Conboy MJ, Morgenthaler A, Schlesinger C, Bugaj L, Paliwal P, Schaffer D (2015) Systemic attenuation of the TGF-β pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal. Oncotarget 6(14):11959Google Scholar
  137. 137.
    Yue W, Li Y, Zhang T, Jiang M, Qian Y, Zhang M, Yu X (2015) ESC-derived basal forebrain cholinergic neurons ameliorate the cognitive symptoms associated with Alzheimer’s disease in mouse models. Stem Cell Rep 5(5):776–790Google Scholar
  138. 138.
    Yun H, Kim H, Park K, Shin J, Kang A, Lee K, Chung H (2013) Placenta-derived mesenchymal stem cells improve memory dysfunction in an Aβ 1–42-infused mouse model of Alzheimer’s disease. Cell Death Dis 4(12):e958Google Scholar
  139. 139.
    Zhang J, Chopp M (2013) Cell-based therapy for ischemic stroke. Expert Opin Biol Ther 13(9):1229–1240Google Scholar
  140. 140.
    Zhang W, Wang GM, Wang PJ, Zhang Q, Sha SH (2014) Effects of neural stem cells on synaptic proteins and memory in a mouse model of Alzheimer’s disease. J Neurosci Res 92(2):185–194Google Scholar
  141. 141.
    Zhang W, Wang P-J, Sha H-y, Ni J, Li M-h, Gu G-j (2014) Neural stem cell transplants improve cognitive function without altering amyloid pathology in an APP/PS1 double transgenic model of Alzheimer’s disease. Mol Neurobiol 50(2):423–437Google Scholar
  142. 142.
    Zhang W, Gu GJ, Shen X, Zhang Q, Wang GM, Wang PJ (2015) Neural stem cell transplantation enhances mitochondrial biogenesis in a transgenic mouse model of Alzheimer's disease–like pathology. Neurobiol Aging 36(3):1282–1292Google Scholar
  143. 143.
    Zhang Q, Wu HH, Wang Y, Gu GJ, Zhang W, Xia R (2016) Neural stem cell transplantation decreases neuroinflammation in a transgenic mouse model of Alzheimer’s disease. J Neurochem 136(4):815–825Google Scholar
  144. 144.
    Zhang H, Fang X, Huang D, Luo Q, Zheng M, Wang K, Yin Z (2018) Erythropoietin signaling increases neurogenesis and oligodendrogenesis of endogenous neural stem cells following spinal cord injury both in vivo and in vitro. Mol Med Rep 17(1):264–272Google Scholar
  145. 145.
    Zhang K, Shi Z, Zhou J, Xing Q, Ma S, Li Q, Li Q (2018) Potential application of an injectable hydrogel scaffold loaded with mesenchymal stem cells for treating traumatic brain injury. J Mater Chem B 6(19):2982–2992Google Scholar
  146. 146.
    Zheng X-Y, Wan Q-Q, Zheng C-Y, Zhou H-L, Dong X-Y, Deng Q-S, Yao H, Fu Q, Gao M, Yan Z-J, Wang S-S, You Y, Lv J, Wang X-Y, Chen K-E, Zhang M-Y, Xu R-X (2017) Amniotic mesenchymal stem cells decrease Aβ deposition and improve memory in APP/PS1 transgenic mice. Neurochem Res 42(8):2191–2207Google Scholar
  147. 147.
    Ziabreva I, Perry E, Perry R, Minger SL, Ekonomou A, Przyborski S, Ballard C (2006) Altered neurogenesis in Alzheimer’s disease. J Psychos Res 61(3):311–316Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and TechnologyACECRTehranIran
  2. 2.Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and TechnologyACECRTehranIran
  3. 3.Department of NeurologyShahid Beheshti University of Medical SciencesTehranIran
  4. 4.Department of Biology, Roudehen BranchIslamic Azad UniversityRoudehenIran

Personalised recommendations