l-Asparaginase from Erwinia carotovora: insights about its stability and activity

  • Marcele Faret
  • Stephanie Bath de Morais
  • Nilson Ivo Tonin Zanchin
  • Tatiana de Arruda Campos Brasil de SouzaEmail author
Short Communication


Enzymatic prospection indicated that l-asparaginase from Erwinia carotovora (ECAR-LANS) posses low glutaminase activity and much effort has been made to produce therapeutic ECAR-LANS. However, its low stability precludes its use in therapy. Herein, biochemical and biophysical assays provided data highlighting the influence of solubilization and storage into ECAR-LANS structure, stability, and activity. Moreover, innovations in recombinant expression and purification guaranteed the purification of functional tetramers. According to solubilization condition, the l-asparaginase activity and temperature of melting ranged up to 25–32%, respectively. CD spectra indicate the tendency of ECAR-LANS to instability and the influence of β-structures in activity. These results provide relevant information to guide formulations with prolonged action in the bloodstream.


l-asparaginase Biophysical behavior In solution characterization 



Funding was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico. Funding was provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. Funding was provided by Fundação Oswaldo Cruz. Funding was provided by Programa de Pesquisa para o SUS.

Compliance with ethical standards

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11033_2018_4459_MOESM1_ESM.docx (95 kb)
Supplementary material 1 (DOCX 95 KB)


  1. 1.
    Pieters R, Carroll WL (2008) Biology and treatment of acute lymphoblastic leukemia. Pediatr Clin North Am 55:1–20 ix CrossRefGoogle Scholar
  2. 2.
    Silverman LB, Gelber RD, Dalton VK, Asselin BL, Barr RD, Clavell LA, Hurwitz CA, Moghrabi A, Samson Y, Schorin MA, Arkin S, Declerck L, Cohen HJ, Sallan SE (2001) Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood 97:1211–1218CrossRefGoogle Scholar
  3. 3.
    Amylon MD, Shuster J, Pullen J, Berard C, Link MP, Wharam M, Katz J, Yu A, Laver J, Ravindranath Y, Kurtzberg J, Desai S, Camitta B, Murphy SB (1999) Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a Pediatric Oncology Group study. Leukemia 13:335–342CrossRefGoogle Scholar
  4. 4.
    Abshire TC, Pollock BH, Billett AL, Bradley P, Buchanan GR (2000) Weekly polyethylene glycol conjugated l-asparaginase compared with biweekly dosing produces superior induction remission rates in childhood relapsed acute lymphoblastic leukemia: a Pediatric Oncology Group Study. Blood 96:1709–1715PubMedGoogle Scholar
  5. 5.
    Asselin BL (1999) The three asparaginases. Comparative pharmacology and optimal use in childhood leukemia. Adv Exp Med Biol 457:621–629CrossRefGoogle Scholar
  6. 6.
    Avramis VI, Tiwari PN (2006) Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia. Int J Nanomed 1:241–254Google Scholar
  7. 7.
    Pinkel D (1987) Curing children of leukemia. Cancer 59:1683–1691CrossRefGoogle Scholar
  8. 8.
    Cheung NK, Chau IY, Coccia PF (1986) Antibody response to Escherichia coli l-asparaginase. Prognostic significance and clinical utility of antibody measurement. Am J Pediatr Hematol Oncol 8:99–104PubMedGoogle Scholar
  9. 9.
    Moghrabi A, Levy DE, Asselin B, Barr R, Clavell L, Hurwitz C, Samson Y, Schorin M, Dalton VK, Lipshultz SE, Neuberg DS, Gelber RD, Cohen HJ, Sallan SE, Silverman LB (2007) Results of the Dana-Farber Cancer Institute ALL Consortium Protocol 95-01 for children with acute lymphoblastic leukemia. Blood 109:896–904CrossRefGoogle Scholar
  10. 10.
    Krasotkina J, Borisova AA, Gervaziev YV, Sokolov NN (2004) One-step purification and kinetic properties of the recombinant l-asparaginase from Erwinia carotovora. Biotechnol Appl Biochem 39:215–221CrossRefGoogle Scholar
  11. 11.
    Eden OB, Shaw MP, Lilleyman JS, Richards S (1990) Non-randomised study comparing toxicity of Escherichia coli and Erwinia asparaginase in children with leukaemia. Med Pediatr Oncol 18:497–502CrossRefGoogle Scholar
  12. 12.
    Yuen SH, Pollard AG (1952) The determination of nitrogen in agricultural materials by the nessler reagent. I.—preparation of the reagent. J Sci Food Agr 3:441–447CrossRefGoogle Scholar
  13. 13.
    Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 36:1277–1282CrossRefGoogle Scholar
  14. 14.
    Jennings MP, Beacham IR (1990) Analysis of the Escherichia coli gene encoding l-asparaginase II, ansB, and its regulation by cyclic AMP receptor and FNR proteins. J Bacteriol 172:1491–1498CrossRefGoogle Scholar
  15. 15.
    Kotzia GA, Labrou NE (2005) Cloning, expression and characterisation of Erwinia carotovora l-asparaginase. J Biotechnol 119:309–323CrossRefGoogle Scholar
  16. 16.
    Pourhossein M, Korbekandi H (2014) Cloning, expression, purification and characterisation of Erwinia carotovora l-asparaginase in Escherichia coli. Adv Biomed Res 3:82CrossRefGoogle Scholar
  17. 17.
    Cheng C-M, Tzou S-C, Zhuang Y-H, Huang C-C, Kao C-H, Liao K-W, Cheng T-C, Chuang C-H, Hsieh Y-C, Tai M-H, Cheng T-L (2014) Functional production of a soluble and secreted single-chain antibody by a bacterial secretion system. PLoS ONE 9:e97367CrossRefGoogle Scholar
  18. 18.
    Kaufmann M, Lindner P, Honegger A, Blank K, Tschopp M, Capitani G, Plückthun A, Grütter MG (2002) Crystal structure of the anti-His tag antibody 3D5 single-chain fragment complexed to its antigen. J Mol Biol 318:135–147CrossRefGoogle Scholar
  19. 19.
    Schlegel S, Rujas E, Ytterberg AJ, Zubarev RA, Luirink J, de Gier J-W (2013) Optimizing heterologous protein production in the periplasm of E. coli by regulating gene expression levels. Microb Cell Fact 12:24CrossRefGoogle Scholar
  20. 20.
    Zhou Y, Zhou Y, Li J, Chen J, Yao Y, Yu L, Peng D, Wang M, Su D, He Y, Gou L (2015) Efficient expression, purification and characterization of native human cystatin C in Escherichia coli periplasm. Protein Expr Purif 111:18–22CrossRefGoogle Scholar
  21. 21.
    Kozak M, Jurga S (2002) A comparison between the crystal and solution structures of Escherichia coli asparaginase II. Acta Biochim Pol 49:509–513PubMedGoogle Scholar
  22. 22.
    Wikman LEK, Krasotkina J, Kuchumova A, Sokolov NN, Papageorgiou AC (2005) Crystallization and preliminary crystallographic analysis of l-asparaginase from Erwinia carotovora. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:407–409CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Instituto Carlos Chagas, ICC – FIOCRUZ/PRCuritiba,Brazil

Personalised recommendations