Advertisement

Monoclonal antibodies in cancer immunotherapy

  • Ilgin Kimiz-Gebologlu
  • Sultan Gulce-Iz
  • Cigir Biray-Avci
Review

Abstract

Nowadays, in cancer treatments, immunotherapy which can be classified as a cancer type specific therapy is more popular than non-specific therapy methods such as surgery, radiotherapy and chemotherapy. The main aim of immunotherapy is to enable patients’ immune system to target cancer cells and destroy them. The mainly used treatment methods in cancer immunotherapy are cancer vaccines, adoptive cell therapy, cytokines and monoclonal antibodies. In this review, we discuss the immunotherapy approaches, especially monoclonal antibodies which are mostly used in cancer immunotherapy in clinical applications.

Keywords

Immunotherapy Monoclonal antibody Cancer Treatment 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Seledtsov VI, Goncharov AG, Seledtsova GV (2015) Multiple-purpose immunotherapy for cancer. Biomed Pharmacother 76:24–29CrossRefGoogle Scholar
  2. 2.
    Harris TJ, Drake CG (2013) Primer on tumor immunology and cancer immunotherapy. J Immunother Cancer 1:12CrossRefGoogle Scholar
  3. 3.
    Barbaros B, Dikmen M (2015) Kanser İmmünoterapisi. Erciyes Üniversitesi Fen Bilim Enst Derg 31:177–181Google Scholar
  4. 4.
    Özlük AA, Oytun MG, Günenç D (2017) Kanser immünoterapisi. FNG Bilim Tıp Transpl Derg 2:21–23.  https://doi.org/10.5606/fng.transplantasyon.2017.004 CrossRefGoogle Scholar
  5. 5.
    Visage M, Joubert A (2010) Minireview: immunotherapy and its role in cancer. Biomed Res 21:377–381Google Scholar
  6. 6.
    Dimberu PM, Leonhardt RM (2011) Cancer immunotherapy takes a multi-faceted approach to kick the immune system into gear. Yale J Biol Med 84:371–380PubMedPubMedCentralGoogle Scholar
  7. 7.
    Karlitepe A, Ozalp O, Avci CB (2015) New approaches for cancer immunotherapy. Tumor Biol 36:4075–4078.  https://doi.org/10.1007/s13277-015-3491-2 CrossRefGoogle Scholar
  8. 8.
    Farkona S, Diamandis EP, Blasutig IM (2016) Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 14Google Scholar
  9. 9.
    Papaioannou NE, Beniata OV, Vitsos P et al (2016) Harnessing the immune system to improve cancer therapy. Ann Transl Med 4:261–261.  https://doi.org/10.21037/atm.2016.04.01 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sathyanarayanan V, Neelapu SS (2015) Cancer immunotherapy: strategies for personalization and combinatorial approaches. Mol Oncol 9:2043–2053CrossRefGoogle Scholar
  11. 11.
    Guo C, Manjili MH, Subjeck JR et al (2013) Therapeutic cancer vaccines. Past, present, and future. Adv Cancer Res.  https://doi.org/10.1016/B978-0-12-407190-2.00007-1 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Şakalar Ç, İzgi K, Canatan H (2013) Kanser immün terapi ve monoklonal antikorlar. FÜ Sağ Bil Tıp Derg 27:105–110Google Scholar
  13. 13.
    Mayor M, Yang N, Sterman D et al (2016) Immunotherapy for non-small cell lung cancer: current concepts and clinical trials. Eur J Cardio-Thoracic Surg 49:1324–1333CrossRefGoogle Scholar
  14. 14.
    Neves H, Kwok HF (2015) Recent advances in the field of anti-cancer immunotherapy. BBA Clin 3:280–288CrossRefGoogle Scholar
  15. 15.
    Rini B (2014) Future approaches in immunotherapy. Semin Oncol 41:S30–S40.  https://doi.org/10.1053/j.seminoncol.2014.09.005 CrossRefPubMedGoogle Scholar
  16. 16.
    Mellman I, Coukos G, Dranoff G (2014) Cancer immunotherapy comes of age. Nature 480:480–489.  https://doi.org/10.1038/nature10673.Cancer CrossRefGoogle Scholar
  17. 17.
    Bean ES (2000) Polyclonal Antibodies. In: Howard GC, Bethell DR (eds) Methods in antibody production and characterization. CRS Press, Taylor and Francis Group, New York, pp 31–50CrossRefGoogle Scholar
  18. 18.
    Kohler H (2000) Superantibodies synergy of innate and acquired immunity. Appl Biochem Biotechnol 83:1.  https://doi.org/10.1385/ABAB:83:1-3 CrossRefPubMedGoogle Scholar
  19. 19.
    Kuhn C, Weiner HL (2016) Therapeutic anti-CD3 monoclonal antibodies: from bench to bedside. Immunotherapy 8:889–906.  https://doi.org/10.2217/imt-2016-0049 CrossRefPubMedGoogle Scholar
  20. 20.
    Pandey S (2010) Hybridoma technology for production of monoclonal antibodies. Int J Pharm Sci Rev Res 1:88–94Google Scholar
  21. 21.
    Liu JKH (2014) The history of monoclonal antibody development—progress, remaining challenges and future innovations. Ann Med Surg 3:113–116CrossRefGoogle Scholar
  22. 22.
    Oldham RK, Dillman RO (2008) Monoclonal antibodies in cancer therapy: 25 years of progress. J Clin Oncol 26:1774–1777CrossRefGoogle Scholar
  23. 23.
    Teillaud JL (2012) From whole monoclonal antibodies to single domain antibodies: think small. Methods Mol Biol 911:3–13.  https://doi.org/10.1007/978-1-61779-968-6_1 CrossRefPubMedGoogle Scholar
  24. 24.
    Levene AP, Singh G, Palmieri C (2005) Therapeutic monoclonal antibodies in oncology. J R Soc Med 98:146–152CrossRefGoogle Scholar
  25. 25.
    Simpson A, Caballero O (2014) Monoclonal antibodies for the therapy of cancer. BMC Proc 8:O6.  https://doi.org/10.1186/1753-6561-8-S4-O6 CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Chung S, Lin YL, Reed C et al (2014) Characterization of in vitro antibody-dependent cell-mediated cytotoxicity activity of therapeutic antibodies—impact of effector cells. J Immunol Methods.  https://doi.org/10.1016/j.jim.2014.03.021 CrossRefPubMedGoogle Scholar
  27. 27.
    Wang W, Erbe AK, Hank JA et al (2015) NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol 6:368PubMedPubMedCentralGoogle Scholar
  28. 28.
    Boyerinas B, Jochems C, Fantini M et al (2015) Antibody-dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol Res.  https://doi.org/10.1158/2326-6066.CIR-15-0059 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Glassman PM, Balthasar JP (2014) Mechanistic considerations for the use of monoclonal antibodies for cancer therapy. Cancer Biol Med.  https://doi.org/10.7497/j.issn.2095-3941.2014.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhou X, Hu W, Qin X (2008) The role of complement in the mechanism of action of rituximab for B-cell lymphoma: implications for therapy. Oncologist.  https://doi.org/10.1634/theoncologist.2008-0089 CrossRefPubMedGoogle Scholar
  31. 31.
    Hallek M (2006) Chemo-immunotherapy—the role of monoclonal antibodies for the treatment of chronic lymphocytic leukaemia. Eur Oncol Dis 1:73–76.  https://doi.org/10.17925/EOH.2006.0.2.73 CrossRefGoogle Scholar
  32. 32.
    Peddi PF, Hurvitz SA (2014) Ado-trastuzumab emtansine (T-DM1) in human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer: latest evidence and clinical potential. Ther Adv Med Oncol 6:202–209CrossRefGoogle Scholar
  33. 33.
    Weiner LM, Surana R, Wang S (2010) Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10:317–327CrossRefGoogle Scholar
  34. 34.
    Scott AM, Allison JP, Wolchok JD (2012) Monoclonal antibodies in cancer therapy. Cancer Immun 12:14PubMedPubMedCentralGoogle Scholar
  35. 35.
    Al-Sawaf O, Fischer K, Engelke A et al (2017) Obinutuzumab in chronic lymphocytic leukemia: design, development and place in therapy. Drug Des Dev Ther 11:295–304CrossRefGoogle Scholar
  36. 36.
    Redman JM, Hill EM, AlDeghaither D, Weiner LM (2015) Mechanisms of action of therapeutic antibodies for cancer. Mol Immunol 67:28–45CrossRefGoogle Scholar
  37. 37.
    Lee JY, Lee HT, Shin W et al (2016) Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy. Nat Commun 7:13354.  https://doi.org/10.1038/ncomms13354 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Dhillon S (2015) Dinutuximab: first global approval. Drugs 75:923–927.  https://doi.org/10.1007/s40265-015-0399-5 CrossRefPubMedGoogle Scholar
  39. 39.
    Magen H, Muchtar E (2016) Elotuzumab: the first approved monoclonal antibody for multiple myeloma treatment. Ther Adv Hematol 7:187–195.  https://doi.org/10.1177/2040620716652862 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sanchez L, Wang Y, Siegel DS, Wang ML (2016) Daratumumab: a first-in-class CD38 monoclonal antibody for the treatment of multiple myeloma. J Hematol Oncol 9:51.  https://doi.org/10.1186/s13045-016-0283-0 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Krishnamurthy A, Jimeno A (2017) Atezolizumab: a novel PD-L1 inhibitor in cancer therapy with a focus in bladder and non-small cell lung cancers. Drugs Today 53:217–237.  https://doi.org/10.1358/dot.2017.53.4.2589163 CrossRefPubMedGoogle Scholar
  42. 42.
    Kaplon H, Reichert JM (2018) Antibodies to watch in 2018. MAbs 10:183–203.  https://doi.org/10.1080/19420862.2018.1415671 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Cai HH (2018) Therapeutic monoclonal antibodies approved by FDA in 2017. MOJ Immunol.  https://doi.org/10.15406/moji.2017.05.00145 CrossRefGoogle Scholar
  44. 44.
    Melosky B, Reardon DA, Nixon AB et al (2018) Bevacizumab biosimilars: scientific justification for extrapolation of indications. Future Oncol.  https://doi.org/10.2217/fon-2018-0051 CrossRefPubMedGoogle Scholar
  45. 45.
    Fuenmayor J, Montaño RF (2011) Novel antibody-based proteins for cancer immunotherapy. Cancers 3:3370–3393CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Bioengineering Graduate Programme, Institute of Natural & Applied SciencesEge UniversityIzmirTurkey
  2. 2.Department of Bioengineering, Faculty of EngineeringEge UniversityIzmirTurkey
  3. 3.Biomedical Technologies Graduate Programme, Institute of Natural & Applied SciencesEge UniversityIzmirTurkey
  4. 4.Department of Medical Biology, Medical SchoolEge UniversityIzmirTurkey

Personalised recommendations