Expression patterns and bioinformatic analysis of miR-1260a and miR-1274a in Prostate Cancer Tunisian patients

  • Rahma Said
  • Yoelsis Garcia-Mayea
  • Nesrine Trabelsi
  • Nouha Setti Boubaker
  • Cristina Mir
  • Ahlem Blel
  • Nidhal Ati
  • Rosanna Paciucci
  • Javier Hernández-Losa
  • Soumaya Rammeh
  • Amine Derouiche
  • Mohamed Chebil
  • Matilde E. LLeonart
  • Slah Ouerhani
Original Article


Currently, microRNAs (miRs) represent great biomarkers in cancer due to their stability and their potential role in diagnosis, prognosis and therapy. This study aims to evaluate the expression levels of miRs-1260 and -1274a in prostate cancer (PC) samples and to identify their eventual targets by using bioinformatic analysis. In this project, we evaluated the expression status of miRs-1260 and -1274a in 86 PC patients and 19 controls by using real-time quantitative PCR and 2−ΔΔCt method. Moreover, we retrieved validated and predicted targets of miRs from several datasets by using the “multiMir” R/Bioconductor package. We have found that miRs-1260 and -1274a were over-expressed in PC patients compared to controls (p < 1 × 10−5). Moreover ROC curve for miRs-1260 and 1274a showed a good performance to distinguish between controls group and PC samples with an area under the ROC curve of 0.897 and 0.784 respectively. However, no significant association could be shown between these two miRs and clinical parameters such as PSA levels, Gleason score, tumor stage, D’Amico classification, lymph node metastasis statues, tumor recurrence, metastasis status and progression after a minimum of 5 years follow-up. Finally, a bioinformatic analysis revealed the association between these two miRs and several targets implicated in prostate cancer initiation pathways.


MiR-1260 MiR-1274a Over-expression Epigenetic Prostate cancer Tunisia 



We would to thank to the medical team of Urology department and pathology anatomy and cytology department, Charles Nicolle Hospital, Tunis, Tunisia. We wish to thank to Rosa Somoza and Teresa Moline for their excellent technical assistance (Pathology Department at Vall d´Hebron Hospital), all members of Dr. LLeonart´s laboratory.


This work was supported by grants from the Instituto de Salud Carlos III, Grants PI12/01104 and PI15/01262 cofinanced by the European Regional Development Fund (ERDF) (ME LLeonart).

Compliance with ethical standards

Conflict of interest

All authors would like to declare that they have no conflict of interest.

Ethics approval

This work is approved by Ethic committee of Charles Nicolle-Tunis-Tunisia.

Informed consent

For this type of retrospective study formal consent is not required.


  1. 1.
    Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA 67(1):7–30. CrossRefGoogle Scholar
  2. 2.
    Souiden Y, Mahdouani M, Chaieb K, Bakhrouf A, Mahdouani K (2012) Lack of association of CYP1A1 polymorphism with prostate cancer susceptibility of Tunisian men. Genet Test Mol Biomark 16(7):661–666. CrossRefGoogle Scholar
  3. 3.
    Keto CJ, Freedland SJA, Risk-Stratified Approach to prostate-specific antigen screening. Eur Urol 59(4):506–508. CrossRefGoogle Scholar
  4. 4.
    Nadler RB, Humphrey PA, Smith DS, Catalona WJ, Ratliff TL (1995) Effect of inflammation and benign prostatic hyperplasia on elevated serum prostate specific antigen levels. J Urol 154(2 Pt 1):407–413CrossRefGoogle Scholar
  5. 5.
    Kirby M, Hirst C, Crawford ED (2011) Characterising the castration-resistant prostate cancer population: a systematic review. Int J Clin Pract 65(11):1180–1192. CrossRefPubMedGoogle Scholar
  6. 6.
    Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH, Chiew MY, Tai CS, Wei TY, Tsai TR, Huang HT, Wang CY, Wu HY, Ho SY, Chen PR, Chuang CH, Hsieh PJ, Wu YS, Chen WL, Li MJ, Wu YC, Huang XY, Ng FL, Buddhakosai W, Huang PC, Lan KC, Huang CY, Weng SL, Cheng YN, Liang C, Hsu WL, Huang HD (2018) miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46(D1):D296–D302. CrossRefPubMedGoogle Scholar
  7. 7.
    Bartels CL, Tsongalis GJ (2010) MicroRNAs: novel biomarkers for human cancer. Ann Biol Clin 68(3):263–272. CrossRefGoogle Scholar
  8. 8.
    Iorio MV, Croce CM (2012) microRNA involvement in human cancer. Carcinogenesis 33(6):1126–1133. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Luu HN, Lin H-Y, Sørensen KD, Ogunwobi OO, Kumar N, Chornokur G, Phelan C, Jones D, Kidd L, Batra J, Yamoah K, Berglund A, Rounbehler RJ, Yang M, Lee SH, Kang N, Kim SJ, Park JY, Di Pietro G (2017) miRNAs associated with prostate cancer risk and progression. BMC Urol 17(1):18. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Madhavan D, Peng C, Wallwiener M, Zucknick M, Nees J, Schott S, Rudolph A, Riethdorf S, Trumpp A, Pantel K, Sohn C, Chang-Claude J, Schneeweiss A, Burwinkel B (2016) Circulating miRNAs with prognostic value in metastatic breast cancer and for early detection of metastasis. Carcinogenesis 37(5):461–470. CrossRefPubMedGoogle Scholar
  11. 11.
    Sand M, Skrygan M, Sand D, Georgas D, Gambichler T, Hahn SA, Altmeyer P, Bechara FG (2013) Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res 351(1):85–98. CrossRefPubMedGoogle Scholar
  12. 12.
    Yan H, Wang S, Yu H, Zhu J, Chen C (2013) Molecular pathways and functional analysis of miRNA expression associated with paclitaxel-induced apoptosis in hepatocellular carcinoma cells. Pharmacology 92(3–4):167–174. CrossRefPubMedGoogle Scholar
  13. 13.
    Zheng G, Du L, Yang X, Zhang X, Wang L, Yang Y, Li J, Wang C (2014) Serum microRNA panel as biomarkers for early diagnosis of colorectal adenocarcinoma. Br J Cancer 111(10):1985–1992. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dai F, Mei L, Meng S, Ma Z, Guo W, Zhou J, Zhang J (2017) The global expression profiling in esophageal squamous cell carcinoma. Genomics 109(3–4):241–250. CrossRefPubMedGoogle Scholar
  15. 15.
    Yoshino H, Yonezawa T, Yonemori M, Miyamoto K, Sakaguchi T, Sugita S, Osako Y, Tatarano S, Nakagawa M, Enokida H (2018) Downregulation of microRNA-1274a induces cell apoptosis through regulation of BMPR1B in clear cell renal cell carcinoma. Oncol Rep 39(1):173–181. CrossRefPubMedGoogle Scholar
  16. 16.
    Halvorsen AR, Kristensen G, Embleton A, Adusei C, Barretina-Ginesta MP, Beale P, Helland A (2017) Evaluation of prognostic and predictive significance of circulating microRNAs in ovarian cancer patients. Dis Mark 2017:3098542. CrossRefGoogle Scholar
  17. 17.
    Wang GJ, Liu GH, Ye YW, Fu Y, Zhang XF (2015) The role of microRNA-1274a in the tumorigenesis of gastric cancer: accelerating cancer cell proliferation and migration via directly targeting FOXO4. Biochem Biophys Res Commun 459(4):629–635. CrossRefPubMedGoogle Scholar
  18. 18.
    Kristensen H, Thomsen AR, Haldrup C, Dyrskjot L, Hoyer S, Borre M, Mouritzen P, Orntoft TF, Sorensen KD (2016) Novel diagnostic and prognostic classifiers for prostate cancer identified by genome-wide microRNA profiling. Oncotarget 7(21):30760–30771. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Moltzahn F, Olshen AB, Baehner L, Peek A, Fong L, Stoppler H, Simko J, Hilton JF, Carroll P, Blelloch R (2011) Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res 71(2):550–560. CrossRefPubMedGoogle Scholar
  20. 20.
    Hessvik NP, Phuyal S, Brech A, Sandvig K, Llorente A (2012) Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochim Biophys Acta 1819(11–12):1154–1163. CrossRefPubMedGoogle Scholar
  21. 21.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25(4):402–408. CrossRefGoogle Scholar
  22. 22.
    Ru Y, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, Bowler R, Mahaffey S, Rossi S, Calin GA, Bemis L, Theodorescu D (2014) The multiMiR R package and database: integration of microRNA-target interactions along with their disease and drug associations. Nucleic Acids Res 42(17):e133. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sales G, Calura E, Cavalieri D, Romualdi C (2012) graphite: a bioconductor package to convert pathway topology to gene network. BMC Bioinform 13:20. CrossRefGoogle Scholar
  24. 24.
    Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798CrossRefGoogle Scholar
  25. 25.
    Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11(8):R90. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866. CrossRefPubMedGoogle Scholar
  27. 27.
    Xie J, Chen M, Zhou J, Mo MS, Zhu LH, Liu YP, Gui QJ, Zhang L, Li GQ (2014) miR-7 inhibits the invasion and metastasis of gastric cancer cells by suppressing epidermal growth factor receptor expression. Oncol Rep 31(4):1715–1722. CrossRefPubMedGoogle Scholar
  28. 28.
    Fujita Y, Yagishita S, Hagiwara K, Yoshioka Y, Kosaka N, Takeshita F, Fujiwara T, Tsuta K, Nokihara H, Tamura T, Asamura H, Kawaishi M, Kuwano K, Ochiya T (2015) The clinical relevance of the miR-197/CKS1B/STAT3-mediated PD-L1 network in chemoresistant non-small-cell lung cancer. Mol Ther 23(4):717–727. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yi Z, Fu Y, Zhao S, Zhang X, Ma C (2010) Differential expression of miRNA patterns in renal cell carcinoma and nontumorous tissues. J Cancer Res Clin Oncol 136(6):855–862. CrossRefPubMedGoogle Scholar
  30. 30.
    Latchana N, Regan K, Howard JH, Aldrink JH, Ranalli MA, Peters SB, Zhang X, Gru A, Payne PRO, Suarez-Kelly LP, Carson WE 3rd (2016) Global microRNA profiling for diagnostic appraisal of melanocytic Spitz tumors. J Surg Res 205(2):350–358. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Khan FH, Pandian V, Ramraj S, Aravindan S, Herman TS, Aravindan N (2015) Reorganization of metastamiRs in the evolution of metastatic aggressive neuroblastoma cells. BMC Genomics 16:501. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mao GE, Reuter VE, Cordon-Cardo C, Dalbagni G, Scher HI, DeKernion JB, Zhang ZF, Rao J (2004) Decreased retinoid X receptor-alpha protein expression in basal cells occurs in the early stage of human prostate cancer development. Cancer Epidemiol Biomark Prevent 13(3):383–390Google Scholar
  33. 33.
    Dhillon PK, Barry M, Stampfer MJ, Perner S, Fiorentino M, Fornari A, Ma J, Fleet J, Kurth T, Rubin MA, Mucci LA (2009) Aberrant cytoplasmic expression of p63 and prostate cancer mortality. Cancer Epidemiol Biomark Prevent 18 (2):595–600. CrossRefGoogle Scholar
  34. 34.
    Higuchi T, Nakamura M, Shimada K, Ishida E, Hirao K, Konishi N (2008) HRK inactivation associated with promoter methylation and LOH in prostate cancer. Prostate 68(1):105–113. CrossRefPubMedGoogle Scholar
  35. 35.
    Hu X, Chen X, Ping H, Chen Z, Zeng F, Lu G (2005) Immunohistochemical analysis of Omi/HtrA2 expression in prostate cancer and benign prostatic hyperplasia. J Huazhong Univ Sci Technol Med Sci 25(6):671–673CrossRefGoogle Scholar
  36. 36.
    Wong AK, Chen Y, Lian L, Ha PC, Petersen K, Laity K, Carillo A, Emerson M, Heichman K, Gupte J, Tavtigian SV, Teng DH (1999) Genomic structure, chromosomal location, and mutation analysis of the human CDC14A gene. Genomics 59(2):248–251. CrossRefPubMedGoogle Scholar
  37. 37.
    Kokontis JM, Lin HP, Jiang SS, Lin CY, Fukuchi J, Hiipakka RA, Chung CJ, Chan TM, Liao S, Chang CH, Chuu CP (2014) Androgen suppresses the proliferation of androgen receptor-positive castration-resistant prostate cancer cells via inhibition of Cdk2, CyclinA, and Skp2. PLoS ONE 9(10):e109170. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Murata T, Takayama K, Urano T, Fujimura T, Ashikari D, Obinata D, Horie-Inoue K, Takahashi S, Ouchi Y, Homma Y, Inoue S (2012) 14-3-3zeta, a novel androgen-responsive gene, is upregulated in prostate cancer and promotes prostate cancer cell proliferation and survival. Clin Cancer Res 18(20):5617–5627. CrossRefPubMedGoogle Scholar
  39. 39.
    Olsson AY, Feber A, Edwards S, Te Poele R, Giddings I, Merson S, Cooper CS (2007) Role of E2F3 expression in modulating cellular proliferation rate in human bladder and prostate cancer cells. Oncogene 26(7):1028–1037. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Laboratory of Protein Engineering and Bio-active MoleculesNational Institute of Applied Science and Technology - University of CarthageTunisTunisia
  2. 2.Biomedical Research in Cancer Stem Cells Group, Pathology DepartmentVall d’Hebron Research Institute (VHIR)BarcelonaSpain
  3. 3.Pathology Anatomy and Cytology DepartmentCharles Nicolle HospitalTunisTunisia
  4. 4.Urology DepartmentCharles Nicolle HospitalTunisTunisia
  5. 5.Faculty of Sciences of BizerteUniversity of CarthageTunisTunisia
  6. 6.Biomedical Research Group of Urology, Vall d’Hebron Research Institute (VHIR)Universitat Autònoma de BarcelonaBarcelonaSpain
  7. 7.Spanish Biomedical Research Network Centre in Oncology (CIBERONC)MadridSpain

Personalised recommendations