Advertisement

Molecular Biology Reports

, Volume 45, Issue 6, pp 1691–1704 | Cite as

BMAL1 regulates balance of osteogenic–osteoclastic function of bone marrow mesenchymal stem cells in type 2 diabetes mellitus through the NF-κB pathway

  • Xiaoguang Li
  • Na Liu
  • Bin Gu
  • Wei Hu
  • Ying Li
  • Bin GuoEmail author
  • Dongsheng ZhangEmail author
Original Article
  • 177 Downloads

Abstract

In bone marrow mesenchymal stem cell (BMSCs), type 2 diabetes mellitus (T2DM) induces metabolic and functional disorders, leading to imbalanced bone resorption and formation and bone loss. Brain and muscle ARNT-like protein 1 (BMAL1) is involved in regulating T2DM-related suppression of BMSCs osteogenesis and bone formation. However, the relationship between BMAL1 and bone remodelling, especially bone resorption in T2DM, is unclear. We investigated the antergic role played by BMAL1 in T2DM-prompted imbalance in BMSCs osteogenic–osteoclastic function. BMAL1 was inhibited and the receptor activator of nuclear factor-κB ligand/osteoprotegerin (RANKL/OPG) ratio was increased in diabetic BMSCs. Inhibitor κB (IκB) expression was decreased, whereas phosphorylated-p65 (p-p65), caspase-3, and p-IκB expression were increased in diabetic BMSCs. BMAL1 overexpression recovered the osteogenesis ability and suppressed osteoclastic induction capability of BMSCs to improve bone metabolism and function, which was partially due to NF-κB pathway activity inhibition. Our results provide evidence about the role of BMAL1 in T2DM-prompted BMSCs differentiation dysfunction, i.e. partially decreasing NF-κB pathway expression. In T2DM, it might be possible to use overexpressed BMAL1 to re-establish the homeostasis of bone metabolism.

Keywords

Bone marrow mesenchymal stem cells Osteoclast induction Osteogenic differentiation Brain and muscle ARNT-like protein 1 Nuclear factor-κB Type 2 diabetes mellitus 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81470754, 51473175, and 31670998); and the Beijing Nova program (Z141107001814101). We thank the staff of the Technical Institute of Physics and Chemistry CAS for their support.

Author contributions

LX, LN, ZD, and GB designed and analyzed data. LX, HW, and LY performed the experiments. LX, LN, GB, and ZD interpreted the results. LX drafted the manuscript. All the authors approved the final version of manuscript. All authors certify that we have participated sufficiently in the work to take public responsibility for the appropriateness of the collection, analysis, and interpretation of the data. All authors have contributed significantly and are in agreement with the content of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest with respect to the authorship and/or publication of this article.

Ethical approval

We performed all experiments in accordance with the National Institutes of Health (NIH, Bethesda, MD, USA) Guidelines for the Care and Use of Laboratory Animals; the PLA General Hospital Institutional Animal Care and Use Committee of approved the experiments (2015-x10-38).

References

  1. 1.
    Bailbé D, Philippe E, Gorbunov E, Tarasov S, Epstein O, Portha B (2013) The novel oral drug Subetta exerts an antidiabetic effect in the diabetic Goto-Kakizaki rat: comparison with rosiglitazone. J Diabetes Res.  https://doi.org/10.1155/2013/763125 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Farr JN, Khosla S (2016) Determinants of bone strength and quality in diabetes mellitus in humans. Bone 82:28–34.  https://doi.org/10.1016/j.bone.2015.07.027 CrossRefPubMedGoogle Scholar
  3. 3.
    Brown ML, Yukata K, Farnsworth CW, Chen DG, Awad H, Hilton MJ, O’Keefe RJ, Xing L, Mooney RA, Zuscik MJ (2014) Delayed fracture healing and increased callus adiposity in a C57BL/6J murine model of obesity-associated type 2 diabetes mellitus. PLoS ONE 9:e99656.  https://doi.org/10.1371/journal.pone.0099656 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Srikanthan P, Crandall CJ, Miller-Martinez D, Seeman TE, Greendale GA, Binkley N, Karlamangla AS (2014) Insulin resistance and bone strength: findings from the study of midlife in the United States. J Bone Miner Res 29:796–803.  https://doi.org/10.1002/jbmr.2083 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bilezikian JP, Watts NB, Usiskin K, Polidori D, Fung A, Sullivan D, Rosenthal N (2016) Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin. J Clin Endocrinol Metab 101:44–51.  https://doi.org/10.1210/jc.2015-1860 CrossRefPubMedGoogle Scholar
  6. 6.
    Manavalan JS, Cremers S, Dempster DW, Zhou H, Dworakowski E, Kode A, Kousteni S, Rubin MR (2012) Circulating osteogenic precursor cells in type 2 diabetes mellitus. J Clin Endocrinol Metab 97:3240–3250.  https://doi.org/10.1210/jc.2012-1546 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Walsh JS, Vilaca T (2017) Obesity, type 2 diabetes and bone in adults. Calcif Tissue Int 100:528–535.  https://doi.org/10.1007/s00223-016-0229-0 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lapmanee S, Charoenphandhu N, Aeimlapa R, Suntornsaratoon P, Wongdee K, Tiyasatkulkovit W, Kengkoom K, Chaimongkolnukul K, Seriwatanachai D, Krishnamra N (2014) High dietary cholesterol masks type 2 diabetes-induced osteopenia and changes in bone microstructure in rats. Lipids 49:975–986.  https://doi.org/10.1007/s11745-014-3950-3 CrossRefPubMedGoogle Scholar
  9. 9.
    Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508CrossRefGoogle Scholar
  10. 10.
    Cao JJ, Gregoire BR, Gao H (2009) High-fat diet decreases cancellous bone mass but has no effect on cortical bone mass in the tibia in mice. Bone 44:1097–1104.  https://doi.org/10.1016/j.bone.2009.02.017 CrossRefPubMedGoogle Scholar
  11. 11.
    Janich P, Pascual G, Merlos-Suárez A, Batlle E, Ripperger J, Albrecht U, Cheng HY, Obrietan K, Di Croce L, Benitah SA (2011) The circadian molecular clock creates epidermal stem cell heterogeneity. Nature 480:209–214.  https://doi.org/10.1038/nature10649 CrossRefPubMedGoogle Scholar
  12. 12.
    Ando H, Kumazaki M, Motosugi Y, Ushijima K, Maekawa T, Ishikawa E, Fujimura A (2011) Impairment of peripheral circadian clocks precedes metabolic abnormalities in ob/ob mice. Endocrinology 152:1347–1354.  https://doi.org/10.1210/en.2010-1068 CrossRefPubMedGoogle Scholar
  13. 13.
    Dudek M, Yang N, Ruckshanthi JP, Williams J, Borysiewicz E, Wang P, Adamson A, Li J, Bateman JF, White MR, Boot-Handford RP, Hoyland JA, Meng QJ (2017) The intervertebral disc contains intrinsic circadian clocks that are regulated by age and cytokines and linked to degeneration. Ann Rheum Dis 76:576–584.  https://doi.org/10.1136/annrheumdis-2016-209428 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Li X, Liu N, Wang Y, Liu J, Shi H, Qu Z, Du T, Guo B, Gu B (2017) Brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein-1 cooperates with glycogen synthase kinase-3β to regulate osteogenesis of bone-marrow mesenchymal stem cells in type 2 diabetes. Mol Cell Endocrinol 440:93–105.  https://doi.org/10.1016/j.mce.2016.10.001 CrossRefPubMedGoogle Scholar
  15. 15.
    Xu C, Ochi H, Fukuda T, Sato S, Sunamura S, Takarada T, Hinoi E, Okawa A, Takeda S (2016) Circadian clock regulates bone resorption in mice. J Bone Miner Res 31:1344–1355.  https://doi.org/10.1002/jbmr.2803 CrossRefPubMedGoogle Scholar
  16. 16.
    Luchavova M, Zikan V, Michalska D, Raska I Jr, Kubena AA, Stepan JJ (2011) The effect of timing of teriparatide treatment on the circadian rhythm of bone turnover in postmenopausal osteoporosis. Eur J Endocrinol 164:643–648.  https://doi.org/10.1530/EJE-10-1108 CrossRefPubMedGoogle Scholar
  17. 17.
    Takarada T, Xu C, Ochi H, Nakazato R, Yamada D, Nakamura S, Kodama A, Shimba S, Mieda M, Fukasawa K, Ozaki K, Iezaki T, Fujikawa K, Yoneda Y, Numano R, Hida A, Tei H, Takeda S, Hinoi E (2017) Bone resorption is regulated by circadian clock in osteoblasts. J Bone Miner Res 32:872–881.  https://doi.org/10.1002/jbmr.3053 CrossRefPubMedGoogle Scholar
  18. 18.
    Austin RL, Rune A, Bouzakri K, Zierath JR, Krook A (2008) siRNA-mediated reduction of inhibitor of nuclear factor-kappaB kinase prevents tumor necrosis factor-alpha-induced insulin resistance in human skeletal muscle. Diabetes 57:2066–2073.  https://doi.org/10.2337/db07-0763 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23:599–622.  https://doi.org/10.1210/er.2001-0039 CrossRefPubMedGoogle Scholar
  20. 20.
    Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Investig 116:1793–1801CrossRefGoogle Scholar
  21. 21.
    Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw-Boris A, Poli G, Olefsky J, Karin M (2005) IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 11:191–198.  https://doi.org/10.1038/nm1185 CrossRefPubMedGoogle Scholar
  22. 22.
    Elattar S, Estaphan S, Mohamed EA, Elzainy A, Naguib M (2017) The protective effect of 1alpha, 25-dihydroxyvitamin d3 and metformin on liver in type 2 diabetic rats. J Steroid Biochem Mol Biol 173:235–244.  https://doi.org/10.1016/j.jsbmb.2016.11.012 CrossRefPubMedGoogle Scholar
  23. 23.
    Guo B, Yang N, Borysiewicz E, Dudek M, Williams JL, Li J, Maywood ES, Adamson A, Hastings MH, Bateman JF, White MR, Boot-Handford RP, Meng QJ (2015) Catabolic cytokines disrupt the circadian clock and the expression of clock-controlled genes in cartilage via an NFкB-dependent pathway. Osteoarthr Cartil 23:1981–1988.  https://doi.org/10.1016/j.joca.2015.02.020 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Volt H, García JA, Doerrier C, Díaz-Casado ME, Guerra-Librero A, López LC, Escames G, Tresguerres JA, Acuña-Castroviejo D (2016) Same molecule but different expression: aging and sepsis trigger NLRP3 inflammasome activation, a target of melatonin. J Pineal Res 60:193–205.  https://doi.org/10.1111/jpi.12303 CrossRefPubMedGoogle Scholar
  25. 25.
    Kim SM, Neuendorff N, Chapkin RS, Earnest DJ (2016) Role of inflammatory signaling in the differential effects of saturated and poly-unsaturated fatty acids on peripheral circadian clocks. EBioMedicine 7:100–111.  https://doi.org/10.1016/j.ebiom.2016.03.037 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Iotsova V, Caamaño J, Loy J, Yang Y, Lewin A, Bravo R (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3:1285–1289CrossRefGoogle Scholar
  27. 27.
    Abdallah BM (2017) Marrow adipocytes inhibit the differentiation of mesenchymal stem cells into osteoblasts via suppressing BMP-signaling. J Biomed Sci 24:11.  https://doi.org/10.1186/s12929-017-0321-4 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yu X, Gong Z, Lin Q, Wang W, Liu S, Li S (2017) Denervation effectively aggravates rat experimental periodontitis. J Periodontal Res 52:1011–1020.  https://doi.org/10.1111/jre.12472 CrossRefPubMedGoogle Scholar
  29. 29.
    D’Souza A, Howarth FC, Yanni J, Dobryznski H, Boyett MR, Adeghate E, Bidasee KR, Singh J (2011) Left ventricle structural remodelling in the prediabetic Goto-Kakizaki rat. Exp Physiol 96:875–888.  https://doi.org/10.1113/expphysiol.2011.058271 CrossRefPubMedGoogle Scholar
  30. 30.
    Portha B, Lacraz G, Kergoat M, Homo-Delarche F, Giroix MH, Bailbé D, Gangnerau MN, Dolz M, Tourrel-Cuzin C, Movassat J (2009) The GK rat beta-cell: a prototype for the diseased human beta-cell in type 2 diabetes. Mol Cell Endocrinol 297:73–85.  https://doi.org/10.1016/j.mce.2008.06.013 CrossRefPubMedGoogle Scholar
  31. 31.
    Ti Y, Xie GL, Wang ZH, Bi XL, Ding WY, Wang J, Jiang GH, Bu PL, Zhang Y, Zhong M, Zhang W (2011) TRB3 gene silencing alleviates diabetic cardiomyopathy in a type 2 diabetic rat model. Diabetes 60:2963–2974.  https://doi.org/10.2337/db11-0549 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhou Y, Guan X, Liu T, Wang X, Yu M, Yang G, Wang H (2015) Whole body vibration improves osseointegration by up-regulating osteoblastic activity but down-regulating osteoblast-mediated osteoclastogenesis via ERK1/2 pathway. Bone 71:17–24CrossRefGoogle Scholar
  33. 33.
    Khosravi R, Sodek KL, Faibish M, Trackman PC (2014) Collagen advanced glycation inhibits its Discoidin Domain Receptor 2 (DDR2)-mediated induction of lysyl oxidase in osteoblasts. Bone 58:33–41.  https://doi.org/10.1016/j.bone.2013.10.001 CrossRefPubMedGoogle Scholar
  34. 34.
    Lin TH, Gibon E, Loi F, Pajarinen J, Córdova LA, Nabeshima A, Lu L, Yao Z, Goodman SB (2017) Decreased osteogenesis in mesenchymal stem cells derived from the aged mouse is associated with enhanced NF-κB activity. J Orthop Res 35:281–288.  https://doi.org/10.1002/jor.23270 CrossRefPubMedGoogle Scholar
  35. 35.
    Aikawa E, Fujita R, Asai M, Kaneda Y, Tamai K (2016) Receptor for advanced glycation end products-mediated signaling impairs the maintenance of bone marrow mesenchymal stromal cells in diabetic model mice. Stem Cells Dev 25:1721–1732.  https://doi.org/10.1089/scd.2016.0067 CrossRefPubMedGoogle Scholar
  36. 36.
    Caldarelli I, Speranza MC, Bencivenga D, Tramontano A, Borgia A, Pirozzi AV, Perrotta S, Oliva A, Della Ragione F, Borriello A (2015) Resveratrol mimics insulin activity in the adipogenic commitment of human bone marrow mesenchymal stromal cells. Int J Biochem Cell Biol 60:60–72.  https://doi.org/10.1016/j.biocel.2014.12.011 CrossRefPubMedGoogle Scholar
  37. 37.
    Amiri L, John A, Shafarin J, Adeghate E, Jayaprakash P, Yasin J, Howarth FC, Raza H (2015) Enhanced glucose tolerance and pancreatic beta cell function by low dose aspirin in hyperglycemic insulin-resistant type 2 diabetic Goto-Kakizaki (GK) rats. Cell Physiol Biochem 36:1939–1950CrossRefGoogle Scholar
  38. 38.
    Smith SS, Dole NS, Franceschetti T, Hrdlicka HC, Delany AM (2016) MicroRNA-433 dampens glucocorticoid receptor signaling, impacting circadian rhythm and osteoblastic gene expression. J Biol Chem 291:21717–21728CrossRefGoogle Scholar
  39. 39.
    Samsa WE, Vasanji A, Midura RJ, Kondratov RV (2016) Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype. Bone 84:194–203.  https://doi.org/10.1016/j.bone.2016.01.006 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kunimoto T, Okubo N, Minami Y, Fujiwara H, Hosokawa T, Asada M, Oda R, Kubo T, Yagita K (2016) A PTH-responsive circadian clock operates in ex vivo mouse femur fracture healing site. Sci Rep 6:22409.  https://doi.org/10.1038/srep22409 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chen Y, Xu X, Tan Z, Ye C, Zhao Q, Chen Y (2012) Age-related BMAL1 change affects mouse bone marrow stromal cell proliferation and osteo-differentiation potential. Arch Med Sci 8:30–38.  https://doi.org/10.5114/aoms.2012.27277 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Min HY, Kim KM, Wee G, Kim EJ, Jang WG (2016) Bmal1 induces osteoblast differentiation via regulation of BMP2 expression in MC3T3-E1 cells. Life Sci 3205:30464–30467.  https://doi.org/10.1016/j.lfs.2016.08.002 CrossRefGoogle Scholar
  43. 43.
    Della Bella E, Pagani S, Giavaresi G, Capelli I, Comai G, Donadei C, Cappuccilli M, La Manna G, Fini M (2017) Uremic serum impairs osteogenic differentiation of human bone marrow mesenchymal stromal cells. J Cell Physiol 232:2201–2209.  https://doi.org/10.1002/jcp.25732 CrossRefPubMedGoogle Scholar
  44. 44.
    Khosla S (2001) Minireview: the OPG/RANKL/RANK system. Endocrinology 142:5050–5055CrossRefGoogle Scholar
  45. 45.
    Liu HJ, Yan H, Yan J, Li H, Chen L, Han LR, Yang XF (2016) Substance P promotes the proliferation, but inhibits differentiation and mineralization of osteoblasts from rats with spinal cord injury via RANKL/OPG system. PLoS ONE 11:e0165063CrossRefGoogle Scholar
  46. 46.
    Zhou DA, Zheng HX, Wang CW, Shi D, Li JJ (2014) Influence of glucocorticoids on the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. BMC Musculoskelet Disord 15:239.  https://doi.org/10.1186/1471-2474-15-239 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Gori F, Hofbauer LC, Dunstan CR, Spelsberg TC, Khosla S, Riggs BL (2000) The expression of osteoprotegerin and RANK ligand and the support of osteoclast formation by stromal-osteoblast lineage cells is developmentally regulated. Endocrinology 141:4768–4776.  https://doi.org/10.1210/endo.141.12.7840 CrossRefPubMedGoogle Scholar
  48. 48.
    Chang J, Liu F, Lee M, Wu B, Ting K, Zara JN, Soo C, Al Hezaimi K, Zou W, Chen X, Mooney DJ, Wang CY (2013) NF-κB inhibits osteogenic differentiation of mesenchymal stem cells by promoting β-catenin degradation. Proc. Natl Acad Sci USA 110:9469–9474.  https://doi.org/10.1073/pnas.1300532110 CrossRefPubMedGoogle Scholar
  49. 49.
    Chung MM, Nicol CJ, Cheng YC, Lin KH, Chen YL, Pei D, Lin CH, Shih YN, Yen CH, Chen SJ, Huang RN, Chiang MC (2017) Metformin activation of AMPK suppresses AGE-induced inflammatory response in hNSCs. Exp Cell Res 352:75–83.  https://doi.org/10.1016/j.yexcr.2017.01.017 CrossRefPubMedGoogle Scholar
  50. 50.
    Casella S, Bielli A, Mauriello A, Orlandi A (2015) Molecular pathways regulating macrovascular pathology and vascular smooth muscle cells phenotype in type 2 diabetes. Int J Mol Sci 16:24353–24368.  https://doi.org/10.3390/ijms161024353 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Bellet MM, Zocchi L, Sassone-Corsi P (2012) The RelB subunit of NFκB acts as a negative regulator of circadian gene expression. Cell Cycle 11:3304–3311.  https://doi.org/10.4161/cc.21669 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Curtis AM, Fagundes CT, Yang G, Palsson-McDermott EM, Wochal P, McGettrick AF, Foley NH, Early JO, Chen L, Zhang H, Xue C, Geiger SS, Hokamp K, Reilly MP, Coogan AN, Vigorito E, FitzGerald GA, O’Neill LA (2015) Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proc Natl Acad Sci USA 112:7231–7236.  https://doi.org/10.1073/pnas.1501327112 CrossRefPubMedGoogle Scholar
  53. 53.
    Spengler ML, Kuropatwinski KK, Comas M, Gasparian AV, Fedtsova N, Gleiberman AS, Gitlin II, Artemicheva NM, Deluca KA, Gudkov AV, Antoch MP (2012) Core circadian protein CLOCK is a positive regulator of NF-κB-mediated transcription. Proc Natl Acad Sci USA 109:E2457–E2465.  https://doi.org/10.1073/pnas.1206274109 CrossRefPubMedGoogle Scholar
  54. 54.
    Rahim I, Djerdjouri B, Sayed RK, Fernández-Ortiz M, Fernández-Gil B, Hidalgo-Gutiérrez A, López LC, Escames G, Reiter RJ, Acuña-Castroviejo D (2017) Melatonin administration to wild-type mice and nontreated NLRP3 mutant mice share similar inhibition of the inflammatory response during sepsis. J Pineal Res.  https://doi.org/10.1111/jpi.12410 CrossRefPubMedGoogle Scholar
  55. 55.
    Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380.  https://doi.org/10.1038/sj.emboj.7600244 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Lin TH, Sato T, Barcay KR, Waters H, Loi F, Zhang R, Pajarinen J, Egashira K, Yao Z, Goodman SB (2015) NF-κB decoy oligodeoxynucleotide enhanced osteogenesis in mesenchymal stem cells exposed to polyethylene particle. Tissue Eng A 21:875–883.  https://doi.org/10.1038/sj.emboj.7600244 CrossRefGoogle Scholar
  57. 57.
    Takano A, Fukuda T, Shinjo T, Iwashita M, Matsuzaki E, Yamamichi K, Takeshita M, Sanui T, Nishimura F (2017) Angiopoietin-like protein 2 is a positive regulator of osteoblast differentiation. Metabolism 69:157–170.  https://doi.org/10.1016/j.metabol.2017.01.006 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of StomatologyShandong Provincial Hospital Affiliated to Shandong UniversityJinanPeople’s Republic of China
  2. 2.Institution of StomatologyThe General Hospital of Chinese PLABeijingPeople’s Republic of China

Personalised recommendations