Advertisement

Molecular Biology Reports

, Volume 45, Issue 5, pp 1349–1355 | Cite as

GLO1 gene polymorphisms and their association with retinitis pigmentosa: a case–control study in a Sicilian population

  • Luigi Donato
  • Concetta Scimone
  • Giacomo Nicocia
  • Lucia Denaro
  • Renato Robledo
  • Antonina Sidoti
  • Rosalia D’Angelo
Original Article

Abstract

Glyoxalase 1 (GLO1) is a ubiquitous cellular enzyme involved in detoxification of methylglyoxal (MGO), a cytotoxic byproduct of glycolysis, whose excess can cause oxidative stress. In retinitis pigmentosa (RP), the prevalent cause of blindness just during working life in the industrialized countries, oxidative stress represents one of the possible mechanisms leading to death of cones following that of rods in the retina. To date, the causes of secondary death of cones remain unclear and among proposed mechanisms are: the deprivation of trophic factors normally produced by healthy rods, a compromised uptake of nutrients to cones due to irreversible destruction of RPE-cone outer segment, microglial activation and following release of pro-inflammatory cytokines and rod-derived toxins. In present paper, role of oxidative stress due to an excess of MGO was evaluated. In particular, we wanted to determine whether single nucleotide polymorphisms (SNPs) in GLO1 influence enzyme activity, contributing to cone death in advanced RP. 120 healthy controls and 80 RP patients from Sicilian population were genotyped for three GLO1 common SNPs, rs1130534 (c.372A>T, p.G124G), rs2736654 (c.A332C, p.E111A) and rs1049346 (c.-7C>T, 5′-UTR). While c.A332C polymorphism was not associated with RP, c.372A>T showed an allelic association (T372 allele frequency = 70% vs 60% in controls, p = 0.0071). Conversely, c.-7C>T showed both genotypic (χ2 = 68.0952; p = 1.634e−15) and allelic associations (χ2 = 51.7094; p = 6.435e−13): mutated allele frequency was higher in controls than in patients, suggesting its possible protective role. RP susceptibility may be associated with two of the analyzed GLO1 polymorphisms (rs1130534 and rs1049346).

Keywords

Glyoxalase 1 Oxidative damage Photoreceptor Retinitis pigmentosa SNP 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Informed consent

All subjects had given written informed consent prior to participation in the study.

Research involving human participants

This study was approved by the Ethics Committee of “Azienda Policlinico Universitario of Messina” and conformed to the tenets of the Declaration of Helsinki.

References

  1. 1.
    Richard JP (1993) Mechanism for the formation of methylglyoxal from triosephosphates. Biochem Soc Trans 21:549–553.  https://doi.org/10.1042/bst0210549 CrossRefPubMedGoogle Scholar
  2. 2.
    Lyles GA, Chalmers J (1992) The metabolism of aminoacetone to methylglyoxal by semicarbazide-sensitive amine oxidase in human umbilical artery. Biochem Pharmacol 43:1409–1414.  https://doi.org/10.1016/0006-2952(92)90196-P CrossRefPubMedGoogle Scholar
  3. 3.
    Casazza JP, Felver ME, Veech RL (1984) The metabolism of acetone in rat. J Biol Chem 259:231–236PubMedGoogle Scholar
  4. 4.
    Hopper DJ, Cooper RA (1971) The regulation of Escherichia coli methylglyoxal synthase; a new control site in glycolysis? FEBS Lett 13:213–216.  https://doi.org/10.1016/0014-5793(71)80538-0 CrossRefPubMedGoogle Scholar
  5. 5.
    Gonzalez FJ (1988) The molecular biology of cytochrome P450s. Pharmacol Rev 40:243–288PubMedGoogle Scholar
  6. 6.
    Yu PH, Wright S, Fan EH, Lun ZR, Gubisne-Harberle D (2003) Physiological and pathological implications of semicarbazide-sensitive amine oxidase. Biochim Biophys Acta 1647:193–199.  https://doi.org/10.1016/S1570-9639(03)00101-8 CrossRefPubMedGoogle Scholar
  7. 7.
    Chang T, Wu L (2006) Methylglyoxal, oxidative stress, and hypertension. Can J Physiol Pharmacol 84:1229–1238.  https://doi.org/10.1139/y06-077 CrossRefPubMedGoogle Scholar
  8. 8.
    Desai K, Wu L (2007) Methylglyoxal and advanced glycation endproducts: new therapeutic horizons? Recent Pat Cardiovasc Drug Discov 2:89–99.  https://doi.org/10.2174/157489007780832498 CrossRefPubMedGoogle Scholar
  9. 9.
    Mostafa AA, Randell EW, Vasdev SC, Gill VD, Han Y, Gadag V, Raouf AA, El Said H (2007) Plasma protein advanced glycation end products, carboxymethyl cysteine, and carboxyethyl cysteine, are elevated and related to nephropathy in patients with diabetes. Mol Cell Biochem 302:35–42.  https://doi.org/10.1007/s11010-007-9422-9 CrossRefPubMedGoogle Scholar
  10. 10.
    Bierhaus A, Nawroth PP (2009) Multiplelevels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia 52:2251–2263.  https://doi.org/10.1007/s00125-009-1458-9 CrossRefPubMedGoogle Scholar
  11. 11.
    Franke S, Dawczynski J, Strobel J, Niwa T, Stahl P, Stein G (2003) Increased levels of advanced glycation end products in human cataractous lenses. J Cataract Refract Surg 29:998–1004.  https://doi.org/10.1016/S0886-3350(02)01841-2 CrossRefPubMedGoogle Scholar
  12. 12.
    Hong SB, Lee KW, Handa JT, Joo CK (2000) Effect of advanced glycation end products on lens epithelial cells in vitro. Biochem Biophys Res Commun 275:53–59.  https://doi.org/10.1006/bbrc.2000.3245 CrossRefPubMedGoogle Scholar
  13. 13.
    Amicarelli F, Colafarina S, Cattani F, Cimini A, Di Ilio C, Ceru MP, Miranda P (2003) Scavenging system efficiency is crucial for cell resistance to ROS-mediated methylglyoxal injury. Free Radic Biol Med 35:856–871.  https://doi.org/10.1016/S0891-5849(03)00438-6 CrossRefPubMedGoogle Scholar
  14. 14.
    Fukunaga M, Miyata S, Higo S, Hamada Y, Ueyama S, Kasuga M (2005) Methylglyoxal induces apoptosis through oxidative stress-mediated activation of p38 mitogen-activated protein kinase in rat Schwann cells. Ann N Y Acad Sci 1043:151–157.  https://doi.org/10.1196/annals.1333.019 CrossRefPubMedGoogle Scholar
  15. 15.
    Akhand AA, Hossain K, Mitsui H, Kato M, Miyata T, Inagi R, Du J, Takeda K, Kawamoto Y, Suzuki H, Kurokawa K, Nakashima I (2001) Glyoxal and methylglyoxal trigger distinct signals for map family kinases and caspase activation in human endothelial cells. Free Radic Biol Med 31:20–30.  https://doi.org/10.1016/S0891-5849(01)00550-0 CrossRefPubMedGoogle Scholar
  16. 16.
    Huang WJ, Tung CW, Ho C, Yang JT, Chen ML, Chang PJ, Lee PH, Lin CL, Wang JY (2007) Ras activation modulates methylglyoxal-induced mesangial cell apoptosis through superoxide production. Ren Fail 29:911–921.  https://doi.org/10.1080/08860220701573509 CrossRefPubMedGoogle Scholar
  17. 17.
    Kim J, Son JW, Lee JA, Oh YS, Shinn SH (2004) Methylglyoxal induces apoptosis mediated by reactive oxygen species in bovine retinal pericytes. J Korean Med Sci 19:95–100.  https://doi.org/10.3346/jkms.2004.19.1.95 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kalapos MP (1999) Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications. Toxicol Lett 110:145–175.  https://doi.org/10.1016/S0378-4274(99)00160-5 CrossRefPubMedGoogle Scholar
  19. 19.
    Kikuchi S, Shinpo K, Moriwaka F, Makita Z, Miyata T, Tashiro K (1999) Neurotoxicity of methylglyoxal and 3-deoxyglucosone on cultured cortical neurons: synergism between glycation and oxidative stress, possibly involved in neurodegenerative diseases. J Neurosci Res 57:280–289.  https://doi.org/10.1002/(SICI)1097-4547(19990715)57:2%3C280::AID-JNR14%3E3.0.CO;2-U CrossRefPubMedGoogle Scholar
  20. 20.
    Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263:17205–17208.  https://doi.org/10.1126/science.6836290 PubMedCrossRefGoogle Scholar
  21. 21.
    Shinpo K, Kikuchi S, Sasaki H, Ogata A, Moriwaka F, Tashiro K (2000) Selective vulnerability of spinal motor neurons to reactive dicarbonyl compounds, intermediate products of glycation, in vitro: implication of inefficient glutathione system in spinal motor neurons. Brain Res 861:151–159.  https://doi.org/10.1016/S0006-8993(00)02047-3 CrossRefPubMedGoogle Scholar
  22. 22.
    Masuda T, Shimazawa M, Hara H (2017) Retinal diseases associated with oxidative stress and the effects of a free radical scavenger (edaravone). Oxid Med Cell Longev 2017:9208489.  https://doi.org/10.1155/2017/9208489 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Boughman AJ, Conneally PM, Nance WE (1980) Population genetic studies of retinitis pigmentosa. Am J Hum Genet 32:223–235PubMedPubMedCentralGoogle Scholar
  24. 24.
    Carmody RJ, McGowan AJ, Cotter TG (1999) Reactive oxygen species as mediators of photoreceptor apoptosis in vitro. Exp Cell Res 248:520–530.  https://doi.org/10.1006/excr.1998.4421 CrossRefPubMedGoogle Scholar
  25. 25.
    Usui S, Oveson BC, Lee SY, Jo YJ, Yoshida T, Miki A, Miki K, Iwase T, Lu L, Campochiaro PA (2009) NADPH oxidase plays a central role in cone cell death in retinitis pigmentosa. J Neurochem 110:1028–1037.  https://doi.org/10.1111/j.1471-4159.2009.06195.x CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Campochiaro PA, Mir TA (2018) The mechanism of cone cell death in retinitis pigmentosa. Prog Retin Eye Res 62:24–37.  https://doi.org/10.1016/j.preteyeres.2017.08.004 CrossRefPubMedGoogle Scholar
  27. 27.
    Wong F, Kwok SY (2016) The survival of cone photoreceptors in retinitis pigmentosa. JAMA Ophthalmol 134:249–250.  https://doi.org/10.1001/jamaophthalmol.2015.5490 CrossRefPubMedGoogle Scholar
  28. 28.
    Narayan DS, Wood JPM, Chidlow G, Casson RJ (2016) A review of the mechanisms of cone degeneration in retinitis pigmentosa. Acta Ophthalmol 94:748–754.  https://doi.org/10.1111/aos.13141 CrossRefPubMedGoogle Scholar
  29. 29.
    Junaid MA, Kowal D, Barua M, Pullarkat PS, Sklower Brooks S, Pullarkat RK (2004) Proteomic studies identified a single nucleotide polymorphism in glyoxalase I as autism susceptibility factor. Am J Med Genet A131:11–17.  https://doi.org/10.1002/ajmg.a.30349 CrossRefGoogle Scholar
  30. 30.
    Rehnstrom K, Ylisaukko-Oja T, Vanhala R, von Wendt L, Peltonen L, Hovatta I (2008) No association between common variants in glyoxalase 1 and autism spectrum disorders. Am J Med Genet B 147:124–127.  https://doi.org/10.1002/ajmg.b.30582 CrossRefGoogle Scholar
  31. 31.
    Sidoti A, Antognelli C, Rinaldi C, D’Angelo R, Dattola V, Girlanda P, Talesa V, Amato A (2007) Glyoxalase I A111E, paraoxonase 1 Q192R and L55M polymorphisms: susceptibility factors of multiple sclerosis? Mult Scler J 13:446–453.  https://doi.org/10.1177/13524585070130040201 CrossRefGoogle Scholar
  32. 32.
    Rinaldi C, Bramanti P, Famà A, Scimone C, Donato L, Antognelli C, Alafaci C, Tomasello F, D’Angelo R, Sidoti A (2015) Glyoxalase I A111e, paraoxonase 1 Q192r and L55m polymorphisms in Italian patients with sporadic cerebral cavernous malformations: a pilot study. J Biol Regul Homeost Agents 29:493–500PubMedGoogle Scholar
  33. 33.
    Wu JC, Li XH, Peng YD, Wang JB, Tang JF, Wang YF (2011) Association of two glyoxalase I gene polymorphisms with nephropathy and retinopathy in Type 2 diabetes. J Endocrinol Invest 34:e343–e348.  https://doi.org/10.3275/7856 PubMedCrossRefGoogle Scholar
  34. 34.
    Tao H, Si L, Zhou X, Liu Z, Ma Z, Zhou H, Zhong W, Cui L, Zhang S, Li Y, Ma G, Zhao J, Huang W, Yao L, Xu Z, Zhao B, Li K (2016) Role of glyoxalase I gene polymorphisms in late-onset epilepsy and drug-resistant epilepsy. J Neurol Sci 363:200–206.  https://doi.org/10.1016/j.jns.2016.01.052 CrossRefPubMedGoogle Scholar
  35. 35.
    Scimone C, Bramanti P, Ruggeri A, Donato L, Alafaci C, Crisafulli C, Mucciardi M, Rinaldi C, Sidoti A, D’Angelo R (2016) CCM3/SERPINI1 bidirectional promoter variants in patients with cerebral cavernous malformations: a molecular and functional study. BMC Med Genet 17:74.  https://doi.org/10.1186/s12881-016-0332-0 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Miles JSM (2001) Applying regression & correlation: a guide for students and researchers. Sage, LondonGoogle Scholar
  37. 37.
    Donato L, Bramanti P, Scimone C, Rinaldi C, D’Angelo R, Sidoti A (2018) miRNA expression profile of retinal pigment epithelial (RPE) cells under oxidative stress conditions. FEBS Open Bio 8:219–233.  https://doi.org/10.1002/2211-5463.12360 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Peculis R, Konrade I, Skapare E, Fridmanis D, Nikitina-Zake L, Lejnieks A, Pirags V, Dambrova M, Klovins J (2013) Identification of glyoxalase 1 polymorphisms associatedwith enzyme activity. Gene 515:140–143.  https://doi.org/10.1016/j.gene.2012.11.009 CrossRefPubMedGoogle Scholar
  39. 39.
    D’Angelo R, Donato L, Venza I, Scimone C, Aragona P, Sidoti A (2017) Possible protective role of the ABCA4 gene c.1268A>G missense variant in Stargardt disease and syndromic retinitis pigmentosa in a Sicilian family: preliminary data. Int J Mol Med 39:1011–1020.  https://doi.org/10.3892/ijmm.2017.2917 CrossRefPubMedGoogle Scholar
  40. 40.
    Bair WB 3rd, Cabello CM, Uchida K, Bause AS, Wondrak GT (2010) GLO1 overexpression in human malignant melanoma. Melanoma Res 20:85–96.  https://doi.org/10.1097/CMR.0b013e3283364903 CrossRefPubMedPubMedCentralGoogle Scholar

Internet resources section

  1. 41.
    SNPator Web Based Software, http://www.snpator.org (October 9, 2017)
  2. 42.
    Arlequin Software 3.5.2.2, http://cmpg.unibe.ch/software/arlequin35/ (October 9, 2017)
  3. 43.
    G*Power Software 3.1, http://www.gpower.hhu.de (October 9, 2017)
  4. 44.
    Haploview software, https://www.broadinstitute.org/haploview/haploview (October 9, 2017)

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
  2. 2.Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Neuroscience-Applied, Molecular Genetics and Predictive MedicineI.E.ME.S.T.PalermoItaly
  3. 3.Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive MedicineUniversity of MessinaMessinaItaly
  4. 4.Department of Clinical and Experimental MedicineUniversity of MessinaMessinaItaly
  5. 5.Department of Biomedical SciencesUniversity of CagliariMonserratoItaly

Personalised recommendations