Molecular Biology Reports

, Volume 45, Issue 5, pp 1099–1109 | Cite as

Acute responses of hemodynamic and oxidative stress parameters to aerobic exercise with blood flow restriction in hypertensive elderly women

  • Angélica Barili
  • Vanessa da Silva Corralo
  • Andréia Machado Cardoso
  • Aline Mânica
  • Beatriz da Silva Rosa Bonadiman
  • Margarete Dulce Bagatini
  • Marzo Edir Da Silva-Grigoletto
  • Gabriela Gonçalves de Oliveira
  • Clodoaldo Antônio De SáEmail author
Original Article


Systemic arterial hypertension has been associated with the majority deaths from cardiovascular disease, especially among the elderly population, and the imbalance between antioxidant and pro-oxidants has been associated with hypertension. This study analyzed the acute responses of cardiorespiratory and oxidative stress parameters to low intensity aerobic exercise (LIAE) with blood flow restriction (BFR) in hypertensive elderly women. The experimental group consisted of 16 hypertensive women (67.2 ± 3.7 years) who underwent a progressive treadmill test and performed three exercise protocols in random order: high intensity (HIAE), low intensity aerobic exercise (LIAE) and low intensity aerobic exercise with blood flow restriction (LIAE + BFR). Data analysis showed that blood pressure and heart rate augmented from rest to post effort (p < 0.05) and reduced from post effort to recovery (p < 0.05) in all protocols. The values of lipid peroxidation were higher after 30 min of recovery when compared to the moment at rest in the LILIAE + BFR (p < 0.05). The same occurred with glutathione-S-transferase and superoxide dismutase activity. However, non-protein thiols levels (NPSH) reduced after 30 min of recovery when compared to the moment at rest in the LILIAE + BFR protocol (p < 0.05). In the HIAE and LIAE + BFR protocols, the levels of NPSH were lower at 30 min of recovery when compared to the same moment in the LIAE protocol (p < 0.05). LIAE + RBF produces an oxidative status and hemodynamic stimulus similar to HIAE. Taken together, these results support the indication of LIAE with BFR in chronic intervention protocols, with potential benefits for the hypertensive elderly population.


Exercise therapy Hypertension Antioxidant Free radicals Elderly 



We thank Unochapecó University for his financial support.

Compliance with ethical standards

Conflict of interest

It is an academic work and there is no conflict of interest.


  1. 1.
    World Health Organization (2013) A global brief on hypertension: silent killer, global public health crisis. World Health Day 2013. World Health Organization, GenevaGoogle Scholar
  2. 2.
    Malachias MVB, Souza WKSB, Plavnik FL, Rodrigues CIS, Brandão AA, Neves MFT (2016) 7ª Diretriz brasileira de hipertensão arterial. Arq Bras Cardiol 107:1–103PubMedPubMedCentralGoogle Scholar
  3. 3.
    Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University press, New YorkGoogle Scholar
  4. 4.
    Slater TF (1984) Free radical mechanisms in tissue injury. Biochem J 222:1–15CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hamer M, Ingle G, Carroll S, Stamatakis E (2012) Physical activity and cardiovascular mortality risk: possible protective mechanisms? Med Sci Sports Exerc 44:84–88. CrossRefPubMedGoogle Scholar
  6. 6.
    Mora S, Cook N, Buring JE, Ridker PM, Lee IM (2007) Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation 116:2110–2118. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sato Y (2005) The history and future of Kaatsu training. Int J Kaatsu Train Res 1:1–5CrossRefGoogle Scholar
  8. 8.
    Schulz KF, Altman DG, Moher D (2010) CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. Ann Int Med 152:726–732. CrossRefPubMedGoogle Scholar
  9. 9.
    Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77CrossRefPubMedGoogle Scholar
  10. 10.
    Jacques-Silva MC, Nogueira CW, Broch LC, Flores EM, Rocha JB (2001) Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice. Pharmacol Toxicol 88:119–125. CrossRefPubMedGoogle Scholar
  11. 11.
    Jentzsch AM, Bachmann H, Fürst P, Biesalski HK (1996) Improved analysis of malondialdehyde in human body fluids. Free Radic Biol Med 20:251–256. CrossRefPubMedGoogle Scholar
  12. 12.
    Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478. CrossRefPubMedGoogle Scholar
  13. 13.
    Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71. CrossRefPubMedGoogle Scholar
  14. 14.
    Warholm M, Guthenberg C, von Bahr C, Mannervik B (1985) Glutathione transferases from human liver. Methods Enzymol 113:499–504Google Scholar
  15. 15.
    Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and simple assay for superoxide dismutase. J Biol Chem 247:3170–3175PubMedGoogle Scholar
  16. 16.
    Metcalf JA, Gallin JI, Nauseef WM, Root RK (1986) Laboratory manual of neutrophil function. Raven Press, New YorkGoogle Scholar
  17. 17.
    Renzi CP, Tanaka H, Sugawara J (2010) Effects of leg blood flow restriction during walking on cardiovascular function. Med Sci Sports Exerc 42:726–732. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Iida H, Kurano H, Takano H, Kubota N, Morita T, Meguro K, Sato Y, Abe T, Yamazaki Y, Uno K, Takenaka K, Hirose K, Nakajima T (2007) Hemodynamic and neurohumoral responses to the restriction of femoral blood flow by KAATSU in healthy subjects. Eur J Appl Physiol 100:275–285. CrossRefPubMedGoogle Scholar
  19. 19.
    Ferreira MLV, Sardeli AV, Souza GV, Bonganha V, Santos LDC, Castro A, Cavaglieri CR, Chacon-Mikahil MPT (2017) Cardiac autonomic and haemodynamic recovery after a single session of aerobic exercise with and without blood flow restriction in older adults. J Sports Sci 35:2412–2420. CrossRefPubMedGoogle Scholar
  20. 20.
    Neto GA, Pereira-Júnior PP, Mura L, Carta MG, Machado S (2015) Effects of different types of physical exercise on the perceived quality of life in active elderly. CNS Neurol Disord Drug Targets 14:1152–1156. CrossRefPubMedGoogle Scholar
  21. 21.
    Anunciação PG, Polito MD (2011) A review on post-exercise hypotension in hypertensive individuals. Arq Bras Cardiol 96:100–109. CrossRefGoogle Scholar
  22. 22.
    Ciolac EG, Guimarães GV, D’Avila VM, Bortolotto LA, Doria EL, Bocchi EA (2009) Acute effects of continuous and interval aerobic exercise on 24-h ambulatory blood pressure in long-term treated hypertensive patients. Int J Cardiol 133:381–387. CrossRefPubMedGoogle Scholar
  23. 23.
    Moraes MR, Bacurau RF, Ramalho JD, Reis FC, Casarini DE, Chagas JR, Oliveira V, Higa EM, Abdalla DS, Pesquero JL, Pesquero JB, Araujo RC (2007) Increase in kinins on post-exercise hypotension in normotensive and hypertensive volunteers. Biol Chem 388:533–540. CrossRefPubMedGoogle Scholar
  24. 24.
    Fagard RH, Cornelissen VA (2007) Effect of exercise on blood pressure control in hypertensive patients. Eur J Cardiovasc Prev Rehabil 14:12–17. CrossRefPubMedGoogle Scholar
  25. 25.
    Brandão Rondon MUP, Alves MJ, Braga AM, Teixeira OT, Barretto AC, Krieger EM, Negrão CE (2002) Postexercise blood pressure reduction in elderly hypertensive patients. J Am Coll Cardiol 39:676–682. CrossRefPubMedGoogle Scholar
  26. 26.
    Quinn TJ (2000) Twenty-four-hour, ambulatory blood pressure responses following acute exercise: impact of exercise intensity. J Hum Hypertens 14:547–553. CrossRefPubMedGoogle Scholar
  27. 27.
    May AK, Brandner CR, Warmington SA (2017) Hemodynamic responses are reduced with aerobic compared with resistance blood flow restriction exercise. Physiol Rep 5:1–10. CrossRefGoogle Scholar
  28. 28.
    Staunton CA, Maio AK, Brandner CR, Warmington SA (2015) Haemodynamics of aerobic and resistance blood flow restriction exercise in young and older adults. Eur J Appl Physiol 115:2293–2302. CrossRefPubMedGoogle Scholar
  29. 29.
    Sugawara J, Tomoto T, Tanaka H (2015) Impact of leg blood flow restriction during walking on central arterial hemodynamics. Am J Physiol Regul Integr Comp Physi 309:R732–R739. CrossRefGoogle Scholar
  30. 30.
    Ozaki H, Brechue WF, Sakamaki M, Yasuda T, Nishikawa M, Aoki N, Ogita F, Abe T (2010) Metabolic and cardiovascular responses to upright cycle exercise with leg blood flow reduction. J Sports Sci Med 9:224–230PubMedPubMedCentralGoogle Scholar
  31. 31.
    Omer K, Nermin G, Ali A, Mehmet A, Unal D, Sezen KS, Hakan K (2017) Tourniquet-induced ischaemia-reperfusion injury: the comparison of antioxidative effects of small-dose propofol and ketamine. Rev Bras Anestesiol 67:246–250. CrossRefPubMedGoogle Scholar
  32. 32.
    Bouzid MA, Hammouda O, Matran R, Robin S, Fabre C (2015) Influence of physical fitness on antioxidant activity and malondialdehyde level in healthy older adults. Appl Physiol Nutr Metab 40:582–589. CrossRefPubMedGoogle Scholar
  33. 33.
    Steinberg JG, Ba A, Brégeon F, Delliaux S, Jammes Y (2007) Cytokine and oxidative responses to maximal cycling exercise in sedentary subjects. Med Sci Sports Exerc 39:964–968. CrossRefPubMedGoogle Scholar
  34. 34.
    Steinberg JG, Delliaux S, Jammes Y (2006) Reliability of different blood indices to explore the oxidative stress in response to maximal cycling and static exercises. Clin Physiol Funct Imaging 26:106–112. CrossRefPubMedGoogle Scholar
  35. 35.
    Laaksonen DE, Atalay M, Niskanen L, Uusitupa M, Hanninen O, Sen CK (2013) Blood glutathione homeostasis as a determinant of resting and exercise-induced oxidative stress in young. Redox Rep 1:53–59. CrossRefGoogle Scholar
  36. 36.
    Fisher-Wellman K, Bloomer RJ (2009) Acute exercise and oxidative stress: a 30-year history. Dyn Med 8:1–25. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Michailidis Y, Jamurtas AZ, Nikolaidis MG, Fatouros IG, Koutedakis Y, Papassotiriou I, Kouretas D (2007) Sampling time is crucial for measurement of aerobic exercise-induced oxidative stress. Med Sci Sports Exerc 39:1107–1113. CrossRefPubMedGoogle Scholar
  38. 38.
    Powers SK, Lennon SL (1999) Analysis of cellular responses to free radicals: focus on exercise and skeletal muscle. Proc Nutr Soc 58:1025–1033Google Scholar
  39. 39.
    Farney TM, Mccarthy CG, Canale RE, Schilling BK, Whitehead PN, Bloomer RJ (2012) Absence of blood oxidative stress in trained men after strenuous exercise. Med Sci Sports Exerc 44:1855–1863. CrossRefPubMedGoogle Scholar
  40. 40.
    Ingul CB (2018) Low volume, high intensity: time-efficient exercise for the treatment of hypertension: invited Commentary. Eur J Prev Cardiol. Available at
  41. 41.
    Weston KS, Wisløff U, Coombes JS (2014) High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med 48:1227–1234. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Health Science Postgraduate ProgramUnochapecó UniversityChapecóBrazil
  2. 2.Federal University of Fronteira SulChapecóBrazil
  3. 3.Molecular Biology and Biochemistry DepartmentFederal University of Santa MariaSanta MariaBrazil
  4. 4.Pharmacology DepartmentFederal University of Santa MariaSanta MariaBrazil
  5. 5.Department of Physical EducationFederal University of SergipeAracajuBrazil

Personalised recommendations