Molecular Biology Reports

, Volume 45, Issue 5, pp 1539–1544 | Cite as

Isolation of microsatellite loci in the African tree species Staudtia kamerunensis (Myristicaceae) using high-throughput sequencing

  • Samuel Vanden Abeele
  • Olivier J. Hardy
  • Steven B. Janssens
Short Communication


Staudtia kamerunensis (Myristicaceae) or ‘Niové’ is an evergreen tree widespread in Central African moist forests. The bark and seeds are used in traditional medicine, yet the tree is mainly harvested for its high quality, multi-purpose timber. To facilitate sustainable harvesting and conservation of the species, we aim to develop microsatellite markers that can be used to study the mating system, gene flow, genetic diversity and population structure. Genomic DNA of S. kamerunensis was sequenced on an Illumina MiSeq platform, generating 195,720 paired-end reads with 3671 sequences containing microsatellites. Amplification tests resulted in the development of 16 highly polymorphic microsatellite loci of which 14 were tested in 183 individuals of S. kamerunensis from three populations. The number of detected alleles per locus ranged from 15 to 39 and the average observed and expected heterozygosity across loci and populations were Ho = 0.713 (0.14–0.97) and He = 0.879 (0.19–0.95) respectively. The high levels of polymorphism observed in the newly developed microsatellite markers demonstrate their usefulness to study gene flow, population structure and spatial distribution of genetic diversity in S. kamerunensis.


African rainforest Microsatellites Population genetics Pycnanthus angolensis Staudtia kamerunensis Myristicaceae 



This study is part of the HERBAXYLAREDD project (BR/143/A3/HERBAXYLAREDD), funded by the Belgian Belspo-BRAIN program axis 4. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant agreement N° 765000.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Resolving with Human and Animal Participants

No Human participants and/or Animals were involved in this study.


  1. 1.
    Oyen LPA, Louppe D (2012) Staudtia kamerunensis Warb. In: Lemmens RHMJ, Louppe D, Oteng-Amoako AA (eds) Plant resources of tropical africa 7(2). Timbers 2. PROTA Foundation/CTA, Wageningen, pp 602–605Google Scholar
  2. 2.
    Tito de Morais C, Ghazoul J, Maycock CR, Bagchi R, Burslem DFRP, Khoo E, Itoh A, Nanami S, Matsuyama S, Finger A, Ismail SA, Kettle CJ (2015) Understanding local patterns of genetic diversity in dipterocarps using a multi-site, multi-species approach: implications for forest management and restoration. For Ecol Manage 356:153–165. CrossRefGoogle Scholar
  3. 3.
    Karan M, Evans DS, Reilly D, Schulte K, Wright C, Innes D, Holton TA, Nikles DG, Dickinson GR (2012) Rapid microsatellite marker development for African mahogany (Khaya senegalensis, Meliaceae) using next-generation sequencing and assessment of its intra-specific genetic diversity. Mol Ecol Resour 12:344–353. CrossRefPubMedGoogle Scholar
  4. 4.
    Malhi Y, Adu-bredu S, Asare RA, Lewis SL, Mayaux P (2013) African rainforests: past, present and future. Philos Trans R Soc B 368:20120312. CrossRefGoogle Scholar
  5. 5.
    Abernethy KA, Coad L, Taylor G, Lee ME, Maisels F (2013) Extent and ecological consequences of hunting in Central African rainforests in the twenty-first century. Philos Trans R Soc B Biol Sci 368:20130494–20130494. CrossRefGoogle Scholar
  6. 6.
    Brodie JF, Helmy OE, Brockelman WY, Maron JL (2009) Bushmeat poaching reduces the seed dispersal and population growth rate of a mammal—dispersed tree. Ecol Appl 19:854–863. CrossRefPubMedGoogle Scholar
  7. 7.
    Effiom EO, Nunez-Iturri G, Smith HG, Ottosson U, Olsson O (2013) Bushmeat hunting changes regeneration of African rainforests. Proc R Soc B Biol Sci 280:20130246–20130246. CrossRefGoogle Scholar
  8. 8.
    Donkpegan ASL, Doucet J-L, Dainou K, Hardy OJ (2015) Microsatellite development and flow cytometry in the African tree genus Afzelia (Fabaceae, Caesalpinioideae) reveal a polyploid complex. Appl Plant Sci 3:1400097. CrossRefGoogle Scholar
  9. 9.
    Daïnou K, Blanc-jolivet C, Degen B, Kimani P, Ndiade-bourobou D, Donkpegan ASL, Tosso F, Kaymak E, Bourland N, Doucet J, Hardy OJ (2016) Revealing hidden species diversity in closely related species using nuclear SNPs, SSRs and DNA sequences—a case study in the tree genus Milicia. BMC Evol Biol 16:259. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sanna O, Pedro S-Z, Rocío B, Gonzalo CM, González-Martínez SC, Ivan S, Caroline S-S, Hardy OJ, Myriam H (2017) Development of genomic tools in a widespread tropical tree, Symphonia globulifera L.f.: a new low-coverage draft genome, SNP and SSR markers. Mol Ecol Resour 17:614–630. CrossRefGoogle Scholar
  11. 11.
    Zhao H, Yang L, Peng Z, Sun H, Yue X, Lou Y, Dong L, Wang L, Gao Z (2015) Developing genome-wide microsatellite markers of bamboo and their applications on molecular marker assisted taxonomy for accessions in the genus Phyllostachys. Sci Rep 5:8018. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Verdcourt B (1997) Myristicaceae. In: Polhill RM (ed) Flora of tropical east Africa. Royal Botanic Gardens, Kew, pp 8–9Google Scholar
  13. 13.
    Magoc T, Salzberg S (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Meglecz E, Costedoat C, Dubut V, Gilles A, Malausa T, Pech N, Martin J-F (2010) QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26:403–404. CrossRefPubMedGoogle Scholar
  15. 15.
    Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Bioinforma Methods Protoc Methods Mol Biol 132:365–386Google Scholar
  16. 16.
    Malausa T, Gilles A, Meglécz E, Blanquart H, Duthoy S, Costedoat C, Dubut V, Pech N, Castagnone-Sereno P, Délye C, Feau N, Frey P, Gauthier P, Guillemaud T, Hazard L, Le Corre V, Lung-Escarmant B, Malé PJG, Ferreira S, Martin JF (2011) High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Mol Ecol Resour 11:638–644. CrossRefPubMedGoogle Scholar
  17. 17.
    Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234. CrossRefPubMedGoogle Scholar
  18. 18.
    Micheneau C, Dauby G, Bourland N, Doucet J-L, Hardy OJ (2011) Development and characterization of microsatellite loci in Pericopsis elata (Fabaceae) using a cost-efficient approach. Am J Bot 98:e268–e270. CrossRefPubMedGoogle Scholar
  19. 19.
    Culley TM, Weller SG, Sakai AK, Putnam KA (2008) Characterization of microsatellite loci in the Hawaiian endemic shrub Schiedea adamantis (Caryophyllaceae) and amplification in related species and genera. Mol Ecol Resour 8:1081–1084. CrossRefPubMedGoogle Scholar
  20. 20.
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Holleley CE, Geerts PG (2009) Multiplex Manager 1.0: a cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46:511–517. CrossRefPubMedGoogle Scholar
  22. 22.
    Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. CrossRefGoogle Scholar
  23. 23.
    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. PubMedCrossRefGoogle Scholar
  24. 24.
    Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113. CrossRefPubMedGoogle Scholar
  25. 25.
    Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Botanic Garden MeiseMeiseBelgium
  2. 2.Evolutionary Biology and Ecology, Faculté des SciencesUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations