Molecular Biology Reports

, Volume 44, Issue 1, pp 25–34 | Cite as

Transposition mechanism, molecular characterization and evolution of IS6110, the specific evolutionary marker of Mycobacterium tuberculosis complex

  • Sarah ThabetEmail author
  • Nada Souissi


The mycobacterial insertion sequence IS6110 proved crucial in deciphering tuberculosis (TB) transmission dynamics. This sequence was also shown to play an important role in the pathogenicity (transmission ability and/or virulence) of Mycobacterium tuberculosis, the main causative agent of TB in humans. In this study, we explored the usefulness of IS6110 and its potential as a phylogenetic/typing marker. We also analyzed the genetic polymorphism and evolutionary trends (selective pressure) of its transposase-encoding open reading frames (ORFs), A and B, using the maximum likelihood method. Both ORFs evolved chronologically through random single nucleotide polymorphisms. They were subjected to strict purifying selection more tight on orfA, with no evidence of significant recombination events. OrfA proved to have a crucial role in regulating the transpositional process. Several analyses showed that IS6110 acquisition antedated the emergence of the Mycobacterium tuberculosis complex. This original copy of IS6110 element was functionally optimal. In conclusion, this study not only demonstrated the usefulness of IS6110 in terms of phylogenetic and typing purposes and its transpositional mechanism, but also informed the scientific community on its evolutionary history.


Mycobacterium tuberculosis IS6110 insertion sequence Transposition Evolutionary marker Polymorphism Selective pressure ORFs 



This research received financial support from the Tunisian Ministry of Agriculture and Hydraulic Resources.

Compliance with ethical standards

Conflict of interest

We confirm that there are no conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.


  1. 1.
    Mes THM, Doeleman M (2006) Positive selection on transposase genes of insertion sequences in the Crocosphaera watsonii genome. J Bacteriol 188:7176–7185CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    McFadden JJ, Butcher PD, Thompson J, Chiodini RJ, Hermon-Taylor J (1987) The use of DNA probes identifying restriction-fragment-length-polymorphisms to examine the Mycobacterium avium complex. Mol Microbiol 1:283–291CrossRefPubMedGoogle Scholar
  3. 3.
    Preston A, Parkhill J, Maskell DJ (2004) The bordetellae: lessons from genomics. Nat Rev Micro 2:379–390CrossRefGoogle Scholar
  4. 4.
    Siguier P, Gourbeyre E, Chandler M (2014) Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev 38:865–891CrossRefPubMedGoogle Scholar
  5. 5.
    van soolingen D, Qian L, de Haas PE, Douglas JT, Traore H, Portaels F et al (1995) Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J Clin Microbiol 33:3234–3238PubMedPubMedCentralGoogle Scholar
  6. 6.
    Durmaz R, Zozio T, Gunal S, Allix C, Fauville-Dufaux M, Rastogi N (2007) Population-based molecular epidemiology study of tuberculosis in Malatya, Turkey. J Clin Microbiol 45:4027–4035CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lari N, Rindi L, Bonanni D, Rastogi, N, Sola C, Tortoli E, Garzelli C (2007) Three-year longitudinal study of genotypes of Mycobacterium tuberculosis Isolates in Tuscany, Italy. J Clin Microbiol 45:1851–1857CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Johnson RC, Reznikoff WS (1983) DNA sequences at the ends of transposon Tn5 required for transposition. Nature 304:280–282CrossRefPubMedGoogle Scholar
  9. 9.
    Zerbib D, Polard P, Escoubas JM, Galas D, Chandler M (1990) The regulatory role of the IS1-encoded InsA protein in transposition. Mol Microbiol 4:471–477CrossRefPubMedGoogle Scholar
  10. 10.
    Ichikawa H, Ikeda K, Amemura J, Ohtsubo E (1990) Two domains in the terminal inverted-repeat sequence of transposon Tn3. Gene 86:11–17CrossRefPubMedGoogle Scholar
  11. 11.
    Thierry D, Matsiota-Bernard P, Pitsouni E, Costopoulos C, Guesdon JL (1993) Use of the insertion element IS6110 for DNA fingerprinting of Mycobacterium tuberculosis isolates presenting various profiles of drug susceptibility. FEMS Immunol Med Microbiol 6:287–298CrossRefPubMedGoogle Scholar
  12. 12.
    Thierry D, Brisson-Noel A, Vincent-Lévy-Frébault V, Nguyen S, Guesdon JL, Gicquel B (1990a) Characterization of Mycobacterium tuberculosis insertion sequence, IS6110, and its application in diagnosis. J Clin Microbiol 28:2668–2673Google Scholar
  13. 13.
    Sekine Y, Eisaki N, Ohtsubo E (1994) Translational control in production of transposase and in transposition of insertion sequence IS3. J Mol Biol 235:1406–1420CrossRefPubMedGoogle Scholar
  14. 14.
    Ghanekar K, McBride A, Dellagostin O, Thorne S, Mooney R, McFadden J (1999) Stimulation of transposition of the Mycobacterium tuberculosis insertion sequence IS6110 by exposure to a microaerobic environment. Mol Microbiol 33:982–993CrossRefPubMedGoogle Scholar
  15. 15.
    Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774PubMedPubMedCentralGoogle Scholar
  16. 16.
    Kim E, Payam N, Hopewell PC, Midori KM (2010) Novel hot spot of IS6110 Insertion in Mycobacterium tuberculosis. J Clin Microbiol 48:1422–1424CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fayet O, Ramond P, Polard P, Prère MF, Chandler M (1990) Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences. Mol Microbiol 4:1771–1777CrossRefPubMedGoogle Scholar
  18. 18.
    Prère MF, Chandler M, Fayet O (1990) Transposition in Shigella dysenteriae: isolation and analysis of IS911, a new member of the IS3 group of insertion sequences. J Bacteriol 172:4090–4099CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Thorne N, Borrell S, Evans J, Magee J, De Viedma DG, Bishop C (2011) IS6110-based global phylogeny of Mycobacterium tuberculosis. Infect Genet Evol 11:132–140CrossRefPubMedGoogle Scholar
  20. 20.
    Fang Z, Kenna DT, Doig C, Smittipat DN, Palittapongarnpim P, Watt B et al (2001) Molecular evidence for independent occurrence of IS6110 insertions at the same sites of the genome of Mycobacterium tuberculosis in different clinical isolates. J Bacteriol 183:5279–5284CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Thierry D, Cave MD, Eisenach KD, Crawford JT, Bates JH, Gicquel B et al (1990b) IS6110, an IS-like element of Mycobacterium tuberculosis complex. Nucleic Acids Res 18:188Google Scholar
  22. 22.
    Burgos MV, Pym AS (2002) Molecular epidemiology of tuberculosis. Eur Respir 36:54s–65sCrossRefGoogle Scholar
  23. 23.
    Otal I, Martin C, Vincent-Lévy-Frebault V, Thierry D, Giquel B (1991) Restriction fragment length polymorphism analysis using IS6110 as an epidemiological marker in tuberculosis. J Clin Microbiol 29:1252–1254PubMedPubMedCentralGoogle Scholar
  24. 24.
    Brosch R, Pym AS, Gordon SV, Cole ST (2001) The evolution of mycobacterial pathogenicity: clues from comparative genomics. Trends Microbiol 9:452–458CrossRefPubMedGoogle Scholar
  25. 25.
    Otal I, Gomez AB, Kremer K, de Haas P, Garcia MJ, Martin C et al (2008) Mapping of IS6110 insertion sites in Mycobacterium bovis isolates in relation to adaptation from the animal to human host. Veterinary Microbiol 129:333–341CrossRefGoogle Scholar
  26. 26.
    Flores L, Jarlsberg L, Kim E, Osmond D, Grinsdale J (2010) Comparison of restriction fragment length polymorphism with the polymorphic guanine-cytosine-rich sequence and spoligotyping for differentiation of Mycobacterium tuberculosis isolates with five or fewer copies of IS6110. J Clin Microbiol 48:575–578CrossRefPubMedGoogle Scholar
  27. 27.
    Alonso H, Samper S, Martín C, Otal I (2013) Mapping IS6110 in high-copy number Mycobacterium tuberculosis strains shows specific insertion points in the Beijing genotype. BMC Genomics 25:14–422Google Scholar
  28. 28.
    Armand S, Vanhuls P, Delcroix G, Courcol R, Lemaître N (2011) Comparison of the Xpert MTB/RIF test with an IS6110-TaqMan real-Time PCR assay for direct detection of Mycobacterium tuberculosis in respiratory and nonrespiratory specimens. J Clin Microbiol 49:1772–1776CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lok KH, Benjamin WH Jr, Kimerling ME, Pruitt V, Lathan M, Razeq J, Hooper N, Cronin W, Dunlap NE (2002) Molecular differentiation of Mycobacterium tuberculosis strains without IS6110 insertions. Emerg Infect Dis 8:1310–1313CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Agasino CB, Ponce de Leon A, Jasmer RM, Small PM (1998) Epidemiology of Mycobacterium tuberculosis strains in San Fransisco that do not contain IS6110. Int J Tuberc Lung Dis 6:518–520Google Scholar
  31. 31.
    Siddiqi N, Shamim Md, Amin A, Chauhan DS, Das R, Srivastava K et al (2001) Typing of drug resistant isolates of Mycobacterium tuberculosis from India using the IS6110 element reveals substantive polymorphism. Infect Genet Evol 1:109–116CrossRefPubMedGoogle Scholar
  32. 32.
    Sola C, Filliol I, Legrand E, Makrousov I, and Rastogi N (2001) Mycobacterium tuberculosis phylogeny reconstruction based on combined numerical analysis with IS1081, IS6110, VNTR, and DR-based spoligotyping suggests the existence of two new phylogeographical clades. J Mol Evol 53:680–689CrossRefPubMedGoogle Scholar
  33. 33.
    Ioerger T, Feng Y, Ganesula K, Chen X, Dobos K, Fortune S et al (2010) Variation among genome sequences of H37Rv strains of Mycobacterium tuberculosis from multiple laboratories. J Bacteriol 192:3645–3653CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Cubillos-Ruiz A, Morales J, Zambrano MM (2008) Analysis of the genetic variation in Mycobacerium tuberculosis strains by multiple genome alignments. BMC research Notes 1:110CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Pepperell C, Hoeppner VH, Lipatov M, Wobeser W, Schoolnik G, Feldman MW (2010) Bacterial genetic signatures of human social phenomena among M. tuberculosis from an aboriginal canadian population. Mol Biol Evol 27:427–440CrossRefPubMedGoogle Scholar
  36. 36.
    Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, Peterson J et al (2002) Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184:5479–5490CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Brosch R, Wolfgang JP, Stavropoulos E, Colston MJ, Cole ST, Gordon SV (1999) Genomic analysis reveals variation between Mycobacterium tuberculosis H37Rv and the attenuated M. tuberculosis H37Ra strain. Infect Immun 67:5768–5774PubMedPubMedCentralGoogle Scholar
  38. 38.
    Thorne N, Evan JT, Smith EG, Hawkey PM, Gharbia S, Arnold C (2007) An IS6110-targeting fluorescent amplified fragment length polymorphism alternative to IS6110 restriction fragment length polymorphism analysis for Mycobacterium tuberculosis DNA fingerprinting. Clin Microbiol Infect 13:964–970CrossRefPubMedGoogle Scholar
  39. 39.
    Fomukong NG, Dale JW (1993) Transpositional activity of IS986 in Mycobacterium smegmatis. Gene 130:99–105CrossRefPubMedGoogle Scholar
  40. 40.
    Fang Z, Doig C, Kenna DT, Smittipat N, Palittapongarnpim P, Watt B et al (1999a) IS6110-mediated deletions of wild type chromosomes of Mycobacterium tuberculosis. J Bacteriol 181:1014–1020Google Scholar
  41. 41.
    Reyes A, Sandoval A, Cubillos-Ruiz A, Varley KE, Hernandez-Neuta I, Samper S et al (2012) IS-seq: a novel high throughput survey of in vivo IS6110 transpositionin multiple Mycobacterium tuberculosis genomes. BMC Genom 13:249CrossRefGoogle Scholar
  42. 42.
    Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544CrossRefPubMedGoogle Scholar
  43. 43.
    Sampson S, Warren R, Richardson M, van der Spuy G, van Helden P, Dunlap N et al (2001) IS6110 insertions in Mycobacterium tuberculosis: predominantly into coding regions. J Clin Microbiol 39:3423–3424CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Viana-Niero C, Rodriguez CAR, Bigi F, Zanini MS, Ferreira-Neto JS, Cataldi A et al (2006) Identification of an IS6110 insertion site in plcD, the unique phospholipase C gene of Mycobacterium bovis. J Med Microbiol 55:451–457CrossRefPubMedGoogle Scholar
  45. 45.
    McEvoy CRE, Falmer AA, Gey van Pittius NC, Victor TC, van Helden PD, Warren RM (2007) The role of IS6110 in the evolution of Mycobacterium tuberculosis. Tuberculosis 87:393–404CrossRefPubMedGoogle Scholar
  46. 46.
    Alonso H, Aguilo JI, Samper S, Caminero Jose A, Campos-Herrero María I, Gicquel B et al (2011) Deciphering the role of IS6110 in a highly transmissible Mycobacterium tuberculosis Beijing strain, GC1237. Tuberculosis 91:117–126CrossRefPubMedGoogle Scholar
  47. 47.
    Sampson S, Richardson M, van Helden P, Warren R (2004) IS6110-mediated deletion polymorphism in isogenic strains of Mycobacterium tuberculosis. J Clin Microbiol 42:895–898CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Fang Z, Forbes KJ (1997) A Mycobacterium tuberculosis IS6110 preferential locus (ipl) for insertion into the genome. J Clin Microbiol 35:479–481PubMedPubMedCentralGoogle Scholar
  49. 49.
    Dziadek J, Rajagopalan M, Parish T, Kurepina N, Greendyke R, Kreiswirth BN et al (2002) Mutations in the CCGTTCACA DnaA Box of Mycobacterium tuberculosis oriC that abolish replication of oriC plasmids are tolerated on the chromosome. J Bacteriol 184:3848–3855CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Casart Y, Turcios L, Florez I, Jaspe R, Guerrero E, de Waard J et al (2008) IS6110 in oriC affects the morphology and growth of Mycobacterium tuberculosis and attenuates virulence in mice. Tuberculosis 88:545–552CrossRefPubMedGoogle Scholar
  51. 51.
    Kamerbeek J, Schouls L, Kolk A, Van Agterveld M, Van Soolingen D, Kuijper S et al (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35:907–914PubMedPubMedCentralGoogle Scholar
  52. 52.
    Schurch A, Kremer K, Kiers A, Boeree M, Siezen R, van Soolingen D (2011) Preferential deletion events in the direct repeat locus of Mycobacterium tuberculosis. J Clin Microbiol 49:1318–1322CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hermans PW, van Soolingen D, Bik EM, de Haas PE, Dale JW, van Embden JD (1991) Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect Immun 59:269–2705Google Scholar
  54. 54.
    Fang Z, Doig C, Morrisson N, Watt B, Forbes KJ (1999b) Characterization of IS1547, a new member of IS900 family in the Mycobacterium tuberculosis complex, and its association with IS6110. J Bacteriol 181:1021–1024Google Scholar
  55. 55.
    McEvoy CRE, Warren RM, van Helden PD, van Pittius NC (2009) Multiple, independent, identical IS6110 insertions in Mycobacterium tuberculosis PPE genes. Tuberculosis 89:439–442CrossRefPubMedGoogle Scholar
  56. 56.
    Warren R, Sampson S, Richardson M, Van Der Spuy G, Lombard C, Victor T et al (2000) Mapping of IS6110 flanking regions in clinical isolates of Mycobacterium tuberculosis demonstrates genome plasticity. Mol Microbiol 37:1405–1416CrossRefPubMedGoogle Scholar
  57. 57.
    van Soolingen D, Hermans PW, de Haas PE, Soll DR, van Embden JD (1991) Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J Clin Microbiol 29:2578–2586PubMedPubMedCentralGoogle Scholar
  58. 58.
    Pérez-Lago L, Herranz M, Martínez Lirola M, Bouza E, de Viedma Darío G (2011) Characterization of microevolution events in Mycobacterium tuberculosis strains involved in recent transmission clusters. J Clin Microbiol 49:3771–3776CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Domenech P, Kolly GS, Leon-Solis L, Fallow A, Reed MB (2010) Massive gene duplication event among clinical isolates of the Mycobacterium tuberculosis W/Beijing family. J Bacteriol 192:4562–4570CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Sampson S, Warren R, Richardson M, Victor T, Jordaan A, van der Spuy G et al (2003) IS6110-mediated deletion polymorphism in the direct repeat region of clinical isolates of Mycobacterium tuberculosis. J Bacteriol 185:2856–2866CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Yesilkaya H, Dale JW, Strachan NJC, Forbes KJ (2005) Natural transposon mutagenesis of clinical isolates of Mycobacterium tuberculosis: how many genes does a pathogen need? J Bacteriol 187:6726–6732CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kurepina NE, Sreevatsan S, Plikaytis BB, Bifani PJ, Connell ND, Donnelly RJ et al (1998) Characterization of the phylogenetic distribution and chromosomal insertion sites of five IS6110 elements in Mycobacterium tuberculosis: non-random integration in the dnaA-dnaN region. Tuber Lung Dis 79:31–42CrossRefPubMedGoogle Scholar
  63. 63.
    Sampson SL, Warren RM, Richardson M, van der Spuy GD, van Helden PD (1999) Disruption of coding regions by IS6110 insertion in Mycobacterium tuberculosis. Tuber Lung Dis 79:349–359CrossRefPubMedGoogle Scholar
  64. 64.
    Beggs ML, Eisenach KD, Cave MD (2000) Mapping of IS6110 insertion sites in two epidemic strains of Mycobacterium tuberculosis. J Clin Microbiol 38:2923–2928PubMedPubMedCentralGoogle Scholar
  65. 65.
    Soto CY, Menendez MC, Perez E, Samper S, Gomez AB, Garcia MJ et al (2004) IS6110 mediates increased transcription of the phoP virulence gene in a multidrug-resistant clinical isolate responsible for tuberculosis outbreaks. J Clin Microbiol 42:212–219CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    García-Calderón C, Casadesús J, Ramos-Morales F (2007) Rcs and PhoPQ regulatory overlap in the control of Salmonella enteric virulence. J Bacteriol 189:6635–6644CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Safi H, Barnes PF, Lakey DL, Shams H, Samten B, Vankayalapati R et al (2004) IS6110 functions as a mobile, monocyte-activated promoter in Mycobacterium tuberculosis. Mol Microbiol 52:999–1012CrossRefPubMedGoogle Scholar
  68. 68.
    van Embden JDA, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, Hermans P, Martin C, McAdam R, Shinnick TM, Small PM (1993) Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31:406–409PubMedPubMedCentralGoogle Scholar
  69. 69.
    Yang ZH, Bates JH, Eisenach KD, Cave MD (2001) Secondary typing of Mycobacterium tuberculosis isolates with matching IS6110 fingerprints from different geographic regions of the United States. J Clin Microbiol 39:1691–1695CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Thabet S, Karboul A, Dekhil N, Mardassi H (2014) IS6110-5′3′FP: an automated typing approach for Mycobacterium tuberculosis complex strains simultaneously targeting and resolving IS6110 5′ and 3′ polymorphisms. Inter. J Infect Dis 29:211–218Google Scholar
  71. 71.
    Prod’hom G, Guilhot C, Gutierrez MC, Varnerot A, Gicquel B, Vincent V (1997) Rapid discrimination of Mycobacterium tuberculosis complex strains by ligation-mediated PCR fingerprint analysis. J Clin Microbiol 35:3331–3334PubMedPubMedCentralGoogle Scholar
  72. 72.
    Yesilkaya H, Thomson A, Doig C, Watt B, Dale JW, Forbes KJ (2003) Locating transposable element polymorphisms in bacterial genomes. J Microbiol Methods 53:355–363CrossRefPubMedGoogle Scholar
  73. 73.
    Namouchi A, Mardassi H (2006) A genomic library-based amplification approach (GL-PCR) for the mapping of multiple IS6110 insertion sites and strain differentiation of Mycobacterium tuberculosis. J Microbiol Methods 67:202–211CrossRefPubMedGoogle Scholar
  74. 74.
    Thabet S, Namouchi A, Mardassi H (2015) Evolutionary trends of the transposase-encoding open reading frames A and B (orfA and orfB) of the mycobacterial IS6110 insertion sequence. PloS One 10:e0130161CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Gutierrez MC, Brisse S, Brosch R, Fabre M, Omais B, Marmiesse M et al (2005) Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1:0055–0060CrossRefGoogle Scholar
  76. 76.
    Supply P, Marceau M, Mangenot S, Roche D, Rouanet C, Khanna V et al (2013) Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat Genet 45:172–179CrossRefPubMedGoogle Scholar
  77. 77.
    Sekine Y, Izumi K, Mizuno T, Ohtsubo E (1997) Inhibition of transpositional recombination by OrfA and OrfB proteins encoded by insertion sequence IS3. Genes Cells 2:547–557CrossRefPubMedGoogle Scholar
  78. 78.
    Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591CrossRefPubMedGoogle Scholar
  79. 79.
    Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:58Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Bacteriology Laboratory, Veterinary Research Institute of TunisiaInstitute for Scientific Agricultural ResearchLa Rabta, TunisTunisia

Personalised recommendations