Advertisement

Molecular Biology Reports

, Volume 43, Issue 12, pp 1411–1422 | Cite as

Evaluating anti-oxidant potential of ganoderic acid A in STAT 3 pathway in prostate cancer

  • Balraj Singh Gill
  • Sanjeev Kumar
  • Navgeet
Original Article

Abstract

Evaluating anti-oxidant potential of Ganoderic acid A in STAT 3 pathway in Prostate cancer. Molecular docking and ADMET activities of different isoforms of ganoderic acid on STAT 3 pathway were performed by Maestro 9.6 (Schrödinger Inc). The ganoderic acid A is best-docked among isoforms which analyses the expression level of antioxidant and STAT 3 pathway in PC-3 cells. The receptor-based molecular docking reveals the best binding interaction of SH2 domain of STAT3 and ganoderic acid A with GScore (−6.134), kcal/mol, Lipophilic EvdW (−1.83), Electro (−1.1), Glide emodel (−31.857), H bond (1.98), MM-GBSA (−69.555). The molecular docking QikProp analyzed the absorption, distribution, metabolism, excretion, and toxicity (ADME/T). The ganoderic acid A is best-docked among isoforms which downregulates the expression of STAT 3 in PC-3 cells. Moreover, ganoderic acid A inhibits proliferation, viability, ROS, DPPH, and analyzed the expression of SOD1, SOD2, and SOD3 by Real time PCR in a PC-3 cell in a dose-dependent manner. Molecular docking revealed the mechanistic binding of Ganoderic acid A in STAT3 signaling, which inhibits the proliferation, viability, and ROS in PC-3 cells.

Keywords

STAT3 Cancer Ganoderic acid Molecular docking Antioxidant 

Notes

Acknowledgments

Authors thanks, Central University of Punjab, Bathinda, for providing the necessary facilities to carry out the present work.

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, Dey S, Sung B (2009) Signal transducer and activator of transcription-3, inflammation, and cancer. Ann N Y Acad Sci 1171:59–76CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281–1283CrossRefPubMedGoogle Scholar
  3. 3.
    Dave B, Landis M D, Tweardy D, Chang J, Dobrolecki L, Wu M, Zhang X, Westbrook T, Hilsenbeck S, Liu D (2012) Selective small molecule Stat3 inhibitor reduces breast cancer tumor-initiating cells and improves recurrence free survival in a human-xenograft model. PloS One 7:e30207CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7:41–51CrossRefPubMedGoogle Scholar
  5. 5.
    Negi A, Gill B (2013) Success stories of enolate form of drugs. PharmaTutor 1:45–53Google Scholar
  6. 6.
    Yao X, Li G, Xu H, Lü C (2012) Inhibition of the JAK-STAT3 signaling pathway by ganoderic acid A enhances chemosensitivity of HepG2 cells to cisplatin. Planta Med 78:1740–1748CrossRefPubMedGoogle Scholar
  7. 7.
    Atreya R, Neurath M (2008) Signaling molecules: the pathogenic role of the IL-6/STAT-3 trans signaling pathway in intestinal inflammation and in colonic cancer. Curr Drug Targets 9:369–374CrossRefPubMedGoogle Scholar
  8. 8.
    Negi A, Navgeet, Gill BS, Anand SS (2014) Tilling: Versatile reverse genetic tool. PharmaTutor 2:26–32Google Scholar
  9. 9.
    Buettner R, Mora LB, Jove R (2002) Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 8:945–954PubMedGoogle Scholar
  10. 10.
    Anand SS, Gill BS (2015) Breakthroughs in Epigenetics. PharmaTutor 3:16–24Google Scholar
  11. 11.
    Glienke W, Maute L, Wicht J, Bergmann L (2009) Curcumin inhibits constitutive STAT3 phosphorylation in human pancreatic cancer cell lines and downregulation of survivin/BIRC5 gene expression. Cancer Invest 28:166–171CrossRefGoogle Scholar
  12. 12.
    Cao H-H, Tse AK-W, Kwan H-Y, Yu H, Cheng C-Y, Su T, Fong W-F, Yu Z-L (2014) Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling. Biochem Pharmacol 87:424–434CrossRefPubMedGoogle Scholar
  13. 13.
    Lee J, Hahm E-R, Singh SV (2010) Withaferin A inhibits activation of signal transducer and activator of transcription 3 in human breast cancer cells. Carcinogenesis 31:1991–1998CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pandey MK, Sung B, Aggarwal BB (2010) Betulinic acid suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase SHP-1 in human multiple myeloma cells. Int J Cancer 127:282–292PubMedPubMedCentralGoogle Scholar
  15. 15.
    Pathak AK, Bhutani M, Nair AS, Ahn KS, Chakraborty A, Kadara H, Guha S, Sethi G, Aggarwal BB (2007) Ursolic acid inhibits STAT3 activation pathway leading to suppression of proliferation and chemosensitization of human multiple myeloma cells. Mol Cancer Res 5:943–955CrossRefPubMedGoogle Scholar
  16. 16.
    Gill BS, Sharma P, Kumar R, Kumar S (2015) Misconstrued versatility of Ganoderma lucidum: a key player in multi-targeted cellular signaling. Tumor Biol 37:2789–2804CrossRefGoogle Scholar
  17. 17.
    Gill B, Alex J, Kumar S (2016) Missing link between microRNA and prostate cancer. Tumour Biol 37:5683–5704CrossRefPubMedGoogle Scholar
  18. 18.
    Gill BS, Kumar S, Navgeet (2016) Triterpenes in cancer: significance and their influence. Mol Biol Rep. doi: 10.1007/s11033-016-4032-9 Google Scholar
  19. 19.
    Gill B S, Kumar S (2015) Differential algorithms-assisted molecular modeling-based identification of mechanistic binding of ganoderic acids. Med Chem Res 24:3483–3493CrossRefGoogle Scholar
  20. 20.
    Becker S, Groner B, Muller CW (1998) Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature 394:145–151CrossRefPubMedGoogle Scholar
  21. 21.
    Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236CrossRefGoogle Scholar
  22. 22.
    Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6:1509–1519CrossRefPubMedGoogle Scholar
  23. 23.
    Singh P, Bast F (2015) Screening and biological evaluation of myricetin as a multiple target inhibitor insulin, epidermal growth factor, and androgen receptor; in silico and in vitro. Invest New Drugs 33:575–593CrossRefPubMedGoogle Scholar
  24. 24.
    Repasky MP, Shelley M, Friesner RA (2007) Flexible ligand docking with Glide. Curr Protoc Bioinformatics: 8–12Google Scholar
  25. 25.
    Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749CrossRefPubMedGoogle Scholar
  26. 26.
    Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J Med Chem 49:6177–6196CrossRefPubMedGoogle Scholar
  27. 27.
    Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phy Chem 98:1978–1988CrossRefGoogle Scholar
  28. 28.
    Lyne PD, Lamb ML, Saeh JC (2006) Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J Med Chem 49:4805–4808CrossRefPubMedGoogle Scholar
  29. 29.
    Jorgensen WL, Duffy EM (2002) Prediction of drug solubility from structure. Adv Drug Deliv Rev 54:355–366CrossRefPubMedGoogle Scholar
  30. 30.
    Aguirre-Moreno A, Campos-Pena V, del Rio-Portilla F, Herrera-Ruiz M, Leon-Rivera I, Montiel E, Rodriguez V, Tello I, Villeda-Hernandez J (2013) Anticonvulsant and neuroprotective effects of oligosaccharides from lingzhi or reishi medicinal mushroom, ganoderma lucidum (Higher Basidiomycetes). Int J Med Mushrooms 15:555–568CrossRefPubMedGoogle Scholar
  31. 31.
    Cheng P G, Phan C-W, Sabaratnam V, Abdullah N, Abdulla M A, Kuppusamy U R (2013) Polysaccharides-rich extract of ganoderma lucidum (MA Curtis: Fr.) P. Karst Accelerates wound healing in streptozotocin-induced diabetic rats. Evid Based Complement Alternat Med 2013:671252. doi: 10.1155/2013/671252 PubMedPubMedCentralGoogle Scholar
  32. 32.
    Singh P, Bast F (2015) High-throughput virtual screening, identification and in vitro biological evaluation of novel inhibitors of signal transducer and activator of transcription 3. Med Chem Res 24:2694–2708CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Centre for BiosciencesCentral University of PunjabBathindaIndia
  2. 2.Department of BiotechnologyDoaba collegeJalandharIndia

Personalised recommendations