Molecular Biology Reports

, Volume 43, Issue 7, pp 667–676 | Cite as

Chicken gga-miR-130a targets HOXA3 and MDFIC and inhibits Marek’s disease lymphoma cell proliferation and migration

  • Bo Han
  • Ling Lian
  • Xin Li
  • Chunfang Zhao
  • Lujiang Qu
  • Changjun Liu
  • Jiuzhou Song
  • Ning Yang
Original Article


Marek’s disease (MD) is an infectious disease of chickens caused by MD virus (MDV), which is a herpesvirus that initiates tumor formation. Studies have indicated that microRNAs (miRNAs) are linked with the development of cancers or tumors. Previously, gga-miR-130a was discovered downregulated in MDV-infected tissues. Here, we aimed to explore the further function of gga-miR-130a in MD. The expression of gga-miR-130a in MDV-infected and uninfected spleens was detected by quantitative real-time PCR (qRT-PCR). Subsequently, proliferation and migration assays of MDV-transformed lymphoid cells (MSB1) were carried out by transfecting gga-miR-130a. The target genes of gga-miR-130a were predicted using TargetScan and miRDB and clustered through Gene Ontology analysis. The target genes were validated by western blot, qRT-PCR, and a dual luciferase reporter assay. Our results show that the expression of gga-miR-130a was reduced in MDV-infected spleens. Gga-miR-130a showed an inhibitory effect on MSB1 cell proliferation and migration. Two target genes, homeobox A3 (HOXA3) and MyoD family inhibitor domain containing (MDFIC), were predicted and clustered to cell proliferation. Results indicate that gga-miR-130a regulates HOXA3 and MDFIC at the protein level but not at the mRNA level. Moreover, the gga-miR-130a binding sites of two target genes have been confirmed. We conclude that gga-miR-130a can arrest MSB1 cell proliferation and migration, and target HOXA3 and MDFIC, which are both involved in the regulation of cell proliferation. Collectively, gga-miR-130a plays a critical role in the tumorigenesis associated with chicken MD.


Chicken Marek’s disease gga-miR-130a Cell proliferation Cell migration HOXA3 MDFIC 



The work was supported in part by the National Natural Science Foundation of China (31320103905 and 31301957), the Program for Changjiang Scholars and Innovative Research in University of China (IRT1191), China Agriculture Research Systems (CARS-41), and Natural Science Foundation of Beijing, China (Grant No. 5154030).

Supplementary material

11033_2016_4002_MOESM1_ESM.xls (1.3 mb)
Supplementary material 1 (XLS 1372 kb)


  1. 1.
    Kottaridis SD (1969) Marek’s disease: a review. Worlds Poult Sci J 25(1):35–45CrossRefPubMedGoogle Scholar
  2. 2.
    Gennart I, Coupeau D, Pejakovic S, Laurent S, Rasschaert D, Muylkens B (2015) Marek’s disease: genetic regulation of gallid herpesvirus 2 infection and latency. Vet J 205(3):339–348. doi: 10.1016/j.tvjl.2015.04.038 CrossRefPubMedGoogle Scholar
  3. 3.
    Marek J (1907) Multiple nervenentzuendung (polyneuritis) bei huehnern. Deutsche Tierärztliche Wochenschrift 15:417–421Google Scholar
  4. 4.
    Morrow C, Fehler F (2004) Marek’s disease: a worldwide problem. In: Davidson F, Nair V (eds) Marek’s Disease: an evolving problem. Elsevier Academic Press, London, pp 49–61Google Scholar
  5. 5.
    Calnek BW (2001) Pathogenesis of Marek’s disease virus infection. Curr Top Microbiol Immunol 255:25–55PubMedGoogle Scholar
  6. 6.
    Calnek BW (1986) Marek’s disease—a model for herpesvirus oncology. Crit Rev Microbiol 12(4):293–320CrossRefPubMedGoogle Scholar
  7. 7.
    Baigent SJ, Smith LP, Nair VK, Currie RJ (2006) Vaccinal control of Marek’s disease: current challenges, and future strategies to maximize protection. Vet Immunol Immunopathol 112(1–2):78–86. doi: 10.1016/j.vetimm.2006.03.014 CrossRefPubMedGoogle Scholar
  8. 8.
    Gimeno IM (2008) Marek’s disease vaccines: a solution for today but a worry for tomorrow? Vaccine 26(Suppl 3):C31–C41CrossRefPubMedGoogle Scholar
  9. 9.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi: 10.1016/j.cell.2009.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379. doi: 10.1146/annurev-biochem-060308-103103 CrossRefPubMedGoogle Scholar
  11. 11.
    Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schier AF (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308(5723):833–838. doi: 10.1126/science.1109020 CrossRefPubMedGoogle Scholar
  12. 12.
    Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A (2006) The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 8(3):278–284. doi: 10.1038/ncb1373 CrossRefPubMedGoogle Scholar
  13. 13.
    Xu YP, Qi RQ, Chen W, Shi Y, Cui ZZ, Gao XH, Chen HD, Zhou L, Mi QS (2012) Aging affects epidermal Langerhans cell development and function and alters their miRNA gene expression profile. Aging (Albany NY) 4(11):742–754CrossRefGoogle Scholar
  14. 14.
    Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113(1):25–36. doi: 10.1016/S0092-8674(03)00231-9 CrossRefPubMedGoogle Scholar
  15. 15.
    Chen L, Guan H, Gu C, Cao Y, Shao J, Wang F (2015) miR-383 inhibits hepatocellular carcinoma cell proliferation via targeting APRIL. Tumour Biol. doi: 10.1007/s13277-015-4071-1 Google Scholar
  16. 16.
    Xiao R, Li C, Chai B (2015) miRNA-144 suppresses proliferation and migration of colorectal cancer cells through GSPT1. Biomed Pharmacother 74:138–144. doi: 10.1016/j.biopha.2015.08.006 CrossRefPubMedGoogle Scholar
  17. 17.
    Rebucci M, Sermeus A, Leonard E, Delaive E, Dieu M, Fransolet M, Arnould T, Michiels C (2015) miRNA-196b inhibits cell proliferation and induces apoptosis in HepG2 cells by targeting IGF2BP1. Mol Cancer 14:79. doi: 10.1186/s12943-015-0349-6 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Que T, Song Y, Liu Z, Zheng S, Long H, Li Z, Liu Y, Wang G, Liu Y, Zhou J, Zhang X, Fang W, Qi S (2015) Decreased miRNA-637 is an unfavorable prognosis marker and promotes glioma cell growth, migration and invasion via direct targeting Akt1. Oncogene 34(38):4952–4963. doi: 10.1038/onc.2014.419 CrossRefPubMedGoogle Scholar
  19. 19.
    Xia Z, Liu F, Zhang J, Liu L (2015) Decreased expression of MiRNA-204-5p contributes to glioma progression and promotes glioma cell growth, migration and invasion. PLoS One 10(7):e0132399. doi: 10.1371/journal.pone.0132399 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Staton AA, Knaut H, Giraldez AJ (2011) miRNA regulation of Sdf1 chemokine signaling provides genetic robustness to germ cell migration. Nat Genet 43(3):204–211. doi: 10.1038/ng.758 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cheng AM, Byrom MW, Shelton J, Ford LP (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33(4):1290–1297. doi: 10.1093/nar/gki200 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hauser B, Zhao Y, Pang X, Ling Z, Myers E, Wang P, Califano J, Gu X (2015) Functions of MiRNA-128 on the regulation of head and neck squamous cell carcinoma growth and apoptosis. PLoS One 10(3):e0116321. doi: 10.1371/journal.pone.0116321 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866. doi: 10.1038/nrc1997 CrossRefPubMedGoogle Scholar
  24. 24.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838. doi: 10.1038/nature03702 CrossRefPubMedGoogle Scholar
  25. 25.
    Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103(7):2257–2261. doi: 10.1073/pnas.0510565103 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Farazi TA, Hoell JI, Morozov P, Tuschl T (2013) MicroRNAs in human cancer. Adv Exp Med Biol 774:1–20. doi: 10.1007/978-94-007-5590-1_1 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Burnside J, Bernberg E, Anderson A, Lu C, Meyers BC, Green PJ, Jain N, Isaacs G, Morgan RW (2006) Marek’s disease virus encodes microRNAs that map to meq and the latency-associated transcript. J Virol 80(17):8778–8786. doi: 10.1128/Jvi.00831-06 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Burnside J, Ouyang M, Anderson A, Bernberg E, Lu C, Meyers BC, Green PJ, Markis M, Isaacs G, Huang E, Morgan RW (2008) Deep sequencing of chicken microRNAs. BMC Genom 9:185. doi: 10.1186/1471-2164-9-185 CrossRefGoogle Scholar
  29. 29.
    Morgan R, Anderson A, Bernberg E, Kamboj S, Huang E, Lagasse G, Isaacs G, Parcells M, Meyers BC, Green PJ, Burnside J (2008) Sequence conservation and differential expression of Marek’s disease virus microRNAs. J Virol 82(24):12213–12220. doi: 10.1128/JVI.01722-08 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhao Y, Yao Y, Xu H, Lambeth L, Smith LP, Kgosana L, Wang X, Nair V (2009) A functional MicroRNA-155 ortholog encoded by the oncogenic Marek’s disease virus. J Virol 83(1):489–492. doi: 10.1128/JVI.01166-08 CrossRefPubMedGoogle Scholar
  31. 31.
    Luo J, Sun AJ, Teng M, Zhou H, Cui ZZ, Qu LH, Zhang GP (2011) Expression profiles of microRNAs encoded by the oncogenic Marek’s disease virus reveal two distinct expression patterns in vivo during different phases of disease. J Gen Virol 92(Pt 3):608–620. doi: 10.1099/vir.0.024158-0 CrossRefPubMedGoogle Scholar
  32. 32.
    Xu S, Xue C, Li J, Bi Y, Cao Y (2011) Marek’s disease virus type 1 microRNA miR-M3 suppresses cisplatin-induced apoptosis by targeting Smad2 of the transforming growth factor beta signal pathway. J Virol 85(1):276–285. doi: 10.1128/JVI.01392-10 CrossRefPubMedGoogle Scholar
  33. 33.
    Zhao Y, Xu H, Yao Y, Smith LP, Kgosana L, Green J, Petherbridge L, Baigent SJ, Nair V (2011) Critical role of the virus-encoded microRNA-155 ortholog in the induction of Marek’s disease lymphomas. PLoS Pathog 7(2):e1001305. doi: 10.1371/journal.ppat.1001305 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lian L, Qu L, Chen Y, Lamont SJ, Yang N (2012) A systematic analysis of miRNA transcriptome in Marek’s disease virus-induced lymphoma reveals novel and differentially expressed miRNAs. PLoS One 7(11):e51003. doi: 10.1371/journal.pone.0051003 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tian F, Luo J, Zhang H, Chang S, Song J (2012) MiRNA expression signatures induced by Marek’s disease virus infection in chickens. Genomics 99(3):152–159. doi: 10.1016/j.ygeno.2011.11.004 CrossRefPubMedGoogle Scholar
  36. 36.
    Hicks JA, Liu HC (2013) Current state of Marek’s disease virus microRNA research. Avian Dis 57(2 Suppl):332–339. doi: 10.1637/10355-090812-Review.1 CrossRefPubMedGoogle Scholar
  37. 37.
    Li X, Lian L, Zhang D, Qu L, Yang N (2014) gga-miR-26a targets NEK6 and suppresses Marek’s disease lymphoma cell proliferation. Poult Sci 93(5):1097–1105. doi: 10.3382/ps.2013-03656 CrossRefPubMedGoogle Scholar
  38. 38.
    Li ZJ, Zhang YP, Li Y, Zheng HW, Zheng YS, Liu CJ (2014) Distinct expression pattern of miRNAs in Marek’s disease virus infected-chicken splenic tumors and non-tumorous spleen tissues. Res Vet Sci 97(1):156–161. doi: 10.1016/j.rvsc.2014.04.003 CrossRefPubMedGoogle Scholar
  39. 39.
    Yu ZH, Teng M, Sun AJ, Yu LL, Hu B, Qu LH, Ding K, Cheng XC, Liu JX, Cui ZZ, Zhang GP, Luo J (2014) Virus-encoded miR-155 ortholog is an important potential regulator but not essential for the development of lymphomas induced by very virulent Marek’s disease virus. Virology 448:55–64. doi: 10.1016/j.virol.2013.09.017 CrossRefPubMedGoogle Scholar
  40. 40.
    Chi JQ, Teng M, Yu ZH, Xu H, Su JW, Zhao P, Xing GX, Liang HD, Deng RG, Qu LH, Zhang GP, Luo J (2015) Marek’s disease virus-encoded analog of microRNA-155 activates the oncogene c-Myc by targeting LTBP1 and suppressing the TGF-beta signaling pathway. Virology 476:72–84. doi: 10.1016/j.virol.2014.11.027 CrossRefPubMedGoogle Scholar
  41. 41.
    Lian L, Li X, Zhao C, Han B, Qu L, Song J, Liu C, Yang N (2015) Chicken gga-miR-181a targets MYBL1 and shows an inhibitory effect on proliferation of Marek’s disease virus-transformed lymphoid cell line. Poult Sci 94(11):2616–2621. doi: 10.3382/ps/pev289 CrossRefPubMedGoogle Scholar
  42. 42.
    Lian L, Qu LJ, Zheng JX, Liu CJ, Zhang YP, Chen YM, Xu GY, Yang N (2010) Expression profiles of genes within a subregion of chicken major histocompatibility complex B in spleen after Marek’s disease virus infection. Poult Sci 89(10):2123–2129. doi: 10.3382/ps.2010-00919 CrossRefPubMedGoogle Scholar
  43. 43.
    Arocho A, Chen B, Ladanyi M, Pan Q (2006) Validation of the 2-DeltaDeltaCt calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts. Diagn Mol Pathol 15(1):56–61CrossRefPubMedGoogle Scholar
  44. 44.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  45. 45.
    Akiyama Y, Kato S (1974) Two cell lines from lymphomas of Marek’s disease. Biken J 17(3):105–116PubMedGoogle Scholar
  46. 46.
    Nazerian K (1987) An updated list of avian cell lines and transplantable tumours. Avian Pathol 16(3):527–544. doi: 10.1080/03079458708436402 CrossRefPubMedGoogle Scholar
  47. 47.
    Goryo M, Suwa T, Matsumoto S, Umemura T, Itakura C (1987) Serial propagation and purification of chicken anaemia agent in MDCC-MSB1 cell line. Avian Pathol 16(1):149–163. doi: 10.1080/03079458708436360 CrossRefPubMedGoogle Scholar
  48. 48.
    Kurien BT, Scofield RH (2006) Western blotting. Methods 38(4):283–293. doi: 10.1016/j.ymeth.2005.11.007 CrossRefPubMedGoogle Scholar
  49. 49.
    Lian L, Qu LJ, Sun HY, Chen YM, Lamont SJ, Liu CJ, Yang N (2012) Gene expression analysis of host spleen responses to Marek’s disease virus infection at late tumor transformation phase. Poult Sci 91(9):2130–2138. doi: 10.3382/ps.2012-02226 CrossRefPubMedGoogle Scholar
  50. 50.
    Zhou YM, Liu J, Sun W (2014) MiR-130a overcomes gefitinib resistance by targeting met in non-small cell lung cancer cell lines. Asian Pac J Cancer Prev 15(3):1391–1396CrossRefPubMedGoogle Scholar
  51. 51.
    Jiang H, Yu WW, Wang LL, Peng Y (2015) miR-130a acts as a potential diagnostic biomarker and promotes gastric cancer migration, invasion and proliferation by targeting RUNX3. Oncol Rep 34(3):1153–1161. doi: 10.3892/or.2015.4099 PubMedPubMedCentralGoogle Scholar
  52. 52.
    Lee SH, Jung YD, Choi YS, Lee YM (2015) Targeting of RUNX3 by miR-130a and miR-495 cooperatively increases cell proliferation and tumor angiogenesis in gastric cancer cells. Oncotarget 6(32):33269–33278PubMedPubMedCentralGoogle Scholar
  53. 53.
    Li N, Yang L, Wang H, Yi T, Jia X, Chen C, Xu P (2015) MiR-130a and MiR-374a function as novel regulators of cisplatin resistance in human ovarian cancer A2780 cells. PLoS One 10(6):e0128886. doi: 10.1371/journal.pone.0128886 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Li NW, Wang HJ, Yang LY, Jia XB, Chen C, Wang X (2013) Regulatory effects and associated mechanisms of miR-130a molecules on cisplatin resistance in ovarian cancer A2780 cell lines. Sichuan Da Xue Xue Bao Yi Xue Ban 44(6):865–870PubMedGoogle Scholar
  55. 55.
    Yang L, Li N, Wang H, Jia X, Wang X, Luo J (2012) Altered microRNA expression in cisplatin-resistant ovarian cancer cells and upregulation of miR-130a associated with MDR1/P-glycoprotein-mediated drug resistance. Oncol Rep 28(2):592–600. doi: 10.3892/or.2012.1823 PubMedGoogle Scholar
  56. 56.
    Yang LY, Wang HJ, Jia XB, Wang X, Luo J, Zhang XY (2012) Expression of miR-130a in cisplatin resistant cell lines of ovarian cancer. Sichuan Da Xue Xue Bao Yi Xue Ban 43(1):60–64PubMedGoogle Scholar
  57. 57.
    Zhang X, Huang L, Zhao Y, Tan W (2013) Downregulation of miR-130a contributes to cisplatin resistance in ovarian cancer cells by targeting X-linked inhibitor of apoptosis (XIAP) directly. Acta Biochim Biophys Sin (Shanghai) 45(12):995–1001. doi: 10.1093/abbs/gmt113 CrossRefGoogle Scholar
  58. 58.
    He L, Wang HY, Zhang L, Huang L, Li JD, Xiong Y, Zhang MY, Jia WH, Yun JP, Luo RZ, Zheng M (2014) Prognostic significance of low DICER expression regulated by miR-130a in cervical cancer. Cell Death Dis 5:e1205. doi: 10.1038/cddis.2014.127 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zhang J, Wu H, Li P, Zhao Y, Liu M, Tang H (2014) NF-kappaB-modulated miR-130a targets TNF-alpha in cervical cancer cells. J Transl Med 12:155. doi: 10.1186/1479-5876-12-155 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Fujita Y, Kojima T, Kawakami K, Mizutani K, Kato T, Deguchi T, Ito M (2015) miR-130a activates apoptotic signaling through activation of caspase-8 in taxane-resistant prostate cancer cells. Prostate 75(14):1568–1578. doi: 10.1002/pros.23031 CrossRefPubMedGoogle Scholar
  61. 61.
    Li T, Wu R, Zhang Y, Zhu D (2011) A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs. BMC Genom 12:186. doi: 10.1186/1471-2164-12-186 CrossRefGoogle Scholar
  62. 62.
    Wang W, Du ZQ, Cheng B, Wang Y, Yao J, Li Y, Cao Z, Luan P, Wang N, Li H (2015) Expression profiling of preadipocyte microRNAs by deep sequencing on chicken lines divergently selected for abdominal fatness. PLoS One 10(2):e0117843. doi: 10.1371/journal.pone.0117843 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Wu WH, Hu CP, Chen XP, Zhang WF, Li XW, Xiong XM, Li YJ (2011) MicroRNA-130a mediates proliferation of vascular smooth muscle cells in hypertension. Am J Hypertens 24(10):1087–1093. doi: 10.1038/ajh.2011.116 CrossRefPubMedGoogle Scholar
  64. 64.
    Pan Y, Wang R, Zhang F, Chen Y, Lv Q, Long G, Yang K (2015) MicroRNA-130a inhibits cell proliferation, invasion and migration in human breast cancer by targeting the RAB5A. Int J Clin Exp Pathol 8(1):384–393PubMedPubMedCentralGoogle Scholar
  65. 65.
    Chen Y, Gorski DH (2008) Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood 111(3):1217–1226. doi: 10.1182/blood-2007-07-104133 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Xu N, Shen C, Luo Y, Xia L, Xue F, Xia Q, Zhang J (2012) Upregulated miR-130a increases drug resistance by regulating RUNX3 and Wnt signaling in cisplatin-treated HCC cell. Biochem Biophys Res Commun 425(2):468–472. doi: 10.1016/j.bbrc.2012.07.127 CrossRefPubMedGoogle Scholar
  67. 67.
    Acunzo M, Visone R, Romano G, Veronese A, Lovat F, Palmieri D, Bottoni A, Garofalo M, Gasparini P, Condorelli G, Chiariello M, Croce CM (2012) miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222. Oncogene 31(5):634–642. doi: 10.1038/onc.2011.260 PubMedGoogle Scholar
  68. 68.
    Lee Y, Samaco RC, Gatchel JR, Thaller C, Orr HT, Zoghbi HY (2008) miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nat Neurosci 11(10):1137–1139. doi: 10.1038/nn.2183 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kovaleva V, Mora R, Park YJ, Plass C, Chiramel AI, Bartenschlager R, Dohner H, Stilgenbauer S, Pscherer A, Lichter P, Seiffert M (2012) miRNA-130a targets ATG2B and DICER1 to inhibit autophagy and trigger killing of chronic lymphocytic leukemia cells. Cancer Res 72(7):1763–1772. doi: 10.1158/0008-5472.CAN-11-3671 CrossRefPubMedGoogle Scholar
  70. 70.
    Chisaka O, Kameda Y (2005) Hoxa3 regulates the proliferation and differentiation of the third pharyngeal arch mesenchyme in mice. Cell Tissue Res 320(1):77–89. doi: 10.1007/s00441-004-1042-z CrossRefPubMedGoogle Scholar
  71. 71.
    Mace KA, Hansen SL, Myers C, Young DM, Boudreau N (2005) HOXA3 induces cell migration in endothelial and epithelial cells promoting angiogenesis and wound repair. J Cell Sci 118(Pt 12):2567–2577. doi: 10.1242/jcs.02399 CrossRefPubMedGoogle Scholar
  72. 72.
    Su D, Ellis S, Napier A, Lee K, Manley NR (2001) Hoxa3 and pax1 regulate epithelial cell death and proliferation during thymus and parathyroid organogenesis. Dev Biol 236(2):316–329. doi: 10.1006/dbio.2001.0342 CrossRefPubMedGoogle Scholar
  73. 73.
    Thebault S, Gachon F, Lemasson I, Devaux C, Mesnard JM (2000) Molecular cloning of a novel human I-mfa domain-containing protein that differently regulates human T-cell leukemia virus type I and HIV-1 expression. J Biol Chem 275(7):4848–4857. doi: 10.1074/jbc.275.7.4848 CrossRefPubMedGoogle Scholar
  74. 74.
    Chen CMA, Kraut N, Groudine M, Weintraub H (1996) I-mf, a novel myogenic repressor, interacts with members of the MyoD family. Cell 86(5):731–741. doi: 10.1016/S0092-8674(00)80148-8 CrossRefPubMedGoogle Scholar
  75. 75.
    Kraut N, Snider L, Chen CMA, Tapscott SJ, Groudine M (1998) Requirement of the mouse I-mfa gene for placental development and skeletal patterning. EMBO J 17(21):6276–6288. doi: 10.1093/emboj/17.21.6276 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Kusano S, Raab-Traub N (2002) I-mfa domain proteins interact with Axin and affect its regulation of the Wnt and c-Jun N-terminal kinase signaling pathways. Mol Cell Biol 22(18):6393–6405CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Liang H, Castro PD, Ma J, Nagarajan L (2005) Finer delineation and transcript map of the 7q31 locus deleted in myeloid neoplasms. Cancer Genet Cytogen 162(2):151–159. doi: 10.1016/j.cancergencyto.2005.03.019 CrossRefGoogle Scholar
  78. 78.
    Cigognini D, Corneo G, Fermo E, Zanella A, Tripputi P (2007) HIC gene, a candidate suppressor gene within a minimal region of loss at 7q31.1 in myeloid neoplasms. Leukemia Res 31(4):477–482. doi: 10.1016/j.leukres.2006.09.007 CrossRefGoogle Scholar
  79. 79.
    Gu L, Dean J, Oliveira ALA, Sheehy N, Hall WW, Gautier VW (2009) Expression profile and differential regulation of the Human I-mfa domain-Containing protein (HIC) gene in immune cells. Immunol Lett 123(2):179–184. doi: 10.1016/j.imlet.2009.03.010 CrossRefPubMedGoogle Scholar
  80. 80.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773. doi: 10.1038/nature03315 CrossRefPubMedGoogle Scholar
  81. 81.
    Grimson A, Farh KKH, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105. doi: 10.1016/j.molcel.2007.06.017 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153(3):654–665. doi: 10.1016/j.cell.2013.03.043 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Bo Han
    • 1
  • Ling Lian
    • 1
  • Xin Li
    • 1
  • Chunfang Zhao
    • 1
  • Lujiang Qu
    • 1
  • Changjun Liu
    • 2
  • Jiuzhou Song
    • 3
  • Ning Yang
    • 1
  1. 1.Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
  2. 2.Division of Avian Infectious DiseasesHarbin Veterinary Research Institute of Chinese Academy of Agricultural SciencesHarbinChina
  3. 3.Department of Animal & Avian SciencesUniversity of MarylandCollege ParkUSA

Personalised recommendations