Advertisement

Molecular Biology Reports

, Volume 43, Issue 1, pp 11–16 | Cite as

Genotype/allelic combinations as potential predictors of myocardial infarction

  • Timur R. Nasibullin
  • Yanina R. Timasheva
  • Regina I. Sadikova
  • Ilsiyar A. Tuktarova
  • Vera V. Erdman
  • Irina E. Nikolaeva
  • Jan Sabo
  • Peter KruzliakEmail author
  • Olga E. Mustafina
Short Communication

Abstract

In order to find new informative predictors of myocardial infarction, we performed an analysis of genotype frequencies of polymorphic markers of SELE (rs2076059, 3832T > C), SELP (rs6131, S290 N), SELL (rs1131498, F206L), ICAM1 (rs5498, K469E), VCAM1 (rs3917010, c.928 + 420A > C), PECAM1 (rs668, V125L), VEGFA (rs35569394, –2549(18)I/D), CCL2 (rs1024611, –2518A > G), NOS3 (rs1799983, E298D), and DDAH1 (rs669173, c.303 + 30998A > G) genes in the group of Russian men with myocardial infarction (N = 315) and the control group of corresponding ethnicity, gender, and age (N = 286). Using Markov chain Monte-Carlo method (APSampler), we found genotype combinations associated with increased and decreased risk of myocardial infarction. The most significant associations were detected for PECAM1*V/V + DDAH1*C (OR = 4.17 CI 1.56–11.15 Pperm = 0.005) SELE*C + VEGFA*I + CCL2*G + VCAM1*A + NOS3*D (OR = 2.74 CI 1.66-4.52 Pperm = 2.09 × 10−5), and VEGFA*D/D + CCL2*A + DDAH1*C (OR = 0.44 CI 0.28-0.7 Pperm = 7.89 × 10−5) genotype combinations.

Keywords

Myocardial infarction Risk prediction Genetic testing 

Notes

Acknowledgments

The study was supported with the equipment provided by USC “Complex equipment for the study of nucleic acids—KODINC”.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

References

  1. 1.
    Ross R (1993) Atherosclerosis: a defense mechanism gone awry. Am J Pathol 143:987–1002PubMedPubMedCentralGoogle Scholar
  2. 2.
    Nasibullin TR, Sadikova RI, Timasheva YR, Tuktarova IA, Erdman VV, Khusainova LN, Nikolaeva IE, Mustafina OE (2014) Association between inflammatory gene polymorphisms and the risk of myocardial infarction. Russ J Genet 50:211–217CrossRefGoogle Scholar
  3. 3.
    Kruzliak P, Kovacova G, Pechanova O, Balogh S (2013) Association between angiotensin II type 1 receptor polymorphism and sudden cardiac death in myocardial infarction. Dis Markers 35:287–293PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Gabbasov Z, Sabo J, Petrovic D, Martell-Claros N, Zagatina A, Mrdovic I, Ciccocioppo R, Cangemi GC, Klimas J, Kruzliak P (2015) Impact of platelet phenotype on myocardial infarction. Biomarkers 20:17–25PubMedCrossRefGoogle Scholar
  5. 5.
    Gaudet M, Fara AG, Beritognolo I, Sabatti M (2009) Allele-specific PCR in SNP genotyping. Single nucleotide polymorphisms. Humana Press, Totowa, pp 415–424CrossRefGoogle Scholar
  6. 6.
    Favorov AV, Andreewski TV, Sudomoina MA, Favorova OO, Parmigiani G, Ochs MF (2005) A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans. Genetics 171:2113–2121PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Bishop GG, McPherson JA, Sanders JM, Hesselbacher SE, Feldman MJ, McNamara CA, Gimple LW, Powers ER, Mousa SA, Sarembock IJ (2001) Selective avb3-receptor blockade reduces macrophage infiltration and restenosis after balloon angioplasty in the atherosclerotic rabbit. Circulation 103:1906–1911PubMedCrossRefGoogle Scholar
  8. 8.
    Reschner H, Milutinovic A, Petrovic D (2009) The PECAM-1 gene polymorphism - a genetic marker of myocardial infarction. Centr Eur J Biol 4:515–520Google Scholar
  9. 9.
    Goodman RS, Kirton CM, Oostingh GJ et al (2008) PECAM-1 polymorphism affects monocyte adhesion to endothelial cells. Transplantation 85:471–477PubMedCrossRefGoogle Scholar
  10. 10.
    Lind L, Ingelsson E, Kumar J, Syvänen AC, Axelsson T, Teerlink T (2013) Genetic variation in the dimethylarginine dimethylaminohydrolase 1 gene (DDAH1) is related to asymmetric dimethylarginine (ADMA) levels, but not to endothelium-dependent vasodilation. Vasc Med 18:192–199PubMedCrossRefGoogle Scholar
  11. 11.
    Abhary S, Burdon KP, Kuot A, Javadiyan S, Whiting MJ, Kasmeridis N, Petrovsky N, Craig JE (2010) Sequence variation in DDAH1 and DDAH2 genes is strongly and additively associated with serum ADMA concentrations in individuals with type 2 diabetes. PLoS ONE 5:e9462PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Liu G, Place AT, Chen Z, Brovkovych VM, Vogel SM, Muller WA, Skidgel RA, Malik AB, Minshall RD (2012) ICAM-1–activated Src and eNOS signaling increase endothelial cell surface PECAM-1 adhesivity and neutrophil transmigration. Blood 120:1942–1952PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Kretowski A, Kinalska I (2000) L-selectin gene T668C mutation in type 1 diabetes patients and their first degree relatives. Immunol Lett 74:225–228PubMedCrossRefGoogle Scholar
  14. 14.
    Atzeni F, Boiardi L, Vaglio A, Nicoli D, Farnetti E, Palmisano A, Pipitone N, Martorana D, Moroni G, Longhi S, Bonatti F, Buzio C, Salvarani C (2013) TLR-4 and VEGF polymorphisms in chronic periaortitis. PLoS ONE 8:e62330PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Chang YP, Liu X, Kim JD, Ikeda MA, Layton MR, Weder AB, Cooper RS, Kardia SL, Rao DC, Hunt SC, Luke A, Boerwinkle E, Chakravarti A (2007) Multiple genes for essential-hypertension susceptibility on chromosome 1q. Am J Hum Genet 80:253–264PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Nasibullin TR, Belonogova VA, Erdman VV et al (2011) The role of polymorphic markers of inflammatory mediator genes in the development of genetic basis of essential hypertension. Cytokin Inflamm 10:22–27Google Scholar
  17. 17.
    Dong ZM, Chapman SM, Brown AA, Frenette PS, Hynes RO, Wagner DD (1998) The combined role of P- and E-selectins in atherosclerosis. J Clin Investig 102:145–152PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Sun J, Li Y, Graziani GM, Filion L, Allan DS (2013) E-selectin mediated adhesion and migration of endothelial colony forming cells is enhanced by SDF-1a/CXCR4. PLoS ONE 8:e60890PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Joven J, Coll B, Tous M, Ferré N, Alonso-Villaverde C, Parra S, Camps J (2006) The influence of HIV infection on the correlation between plasma concentrations of monocyte chemoattractant protein-1 and carotid atherosclerosi. Clin Chim Acta 368:114–119PubMedCrossRefGoogle Scholar
  20. 20.
    McDermott DH, Yang Q, Kathiresan S, Cupples LA, Massaro JM, Keaney JF Jr, Larson MG, Vasan RS, Hirschhorn JN, O’Donnell CJ, Murphy PM, Benjamin EJ (2005) CCL2 polymorphisms are associated with serum monocyte chemoattractant protein-1 levels and myocardial infarction in the Framingham Heart Study. Circulation 112:1113–1120PubMedCrossRefGoogle Scholar
  21. 21.
    Bucova M, Lietava J, Mrazek F, Petrkova J, Penz P, Bernadic M, Buckingham TA, Petrek M (2009) The MCP-1 -2518 (A/G) single nucleotide polymorphism is associated with ischemic heart disease and myocardial infarction in men in the Slovak population. Bratisl Lek Listy 110:385–389PubMedGoogle Scholar
  22. 22.
    Aiello RJ, Bourassa PA, Lindsey S, Weng W, Natoli E, Rollins BJ, Milos PM (1999) Monocyte chemoattractant protein-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 19:1518–1525PubMedCrossRefGoogle Scholar
  23. 23.
    van Royen N, Hoefer I, Buschmann I, Kostin S, Voskuil M, Bode Ch, Schaper W, Piek JJ (2003) Effects of local MCP-1 protein therapy on thedevelopment of the collateral circulation and atherosclerosis in Watanabe hyperlipidemic rabbits. Cardiovasc Res 57:178–185PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Timur R. Nasibullin
    • 1
  • Yanina R. Timasheva
    • 1
  • Regina I. Sadikova
    • 1
  • Ilsiyar A. Tuktarova
    • 1
  • Vera V. Erdman
    • 1
  • Irina E. Nikolaeva
    • 2
  • Jan Sabo
    • 3
  • Peter Kruzliak
    • 3
    • 4
    • 5
    Email author
  • Olga E. Mustafina
    • 1
  1. 1.Institute of Biochemistry and Genetics, Ufa Scientific CentreRussian Academy of SciencesUfaRussian Federation
  2. 2.Republic Centre for CardiologyUfaRussian Federation
  3. 3.Department of Medical Physics and Biophysics, Faculty of MedicinePavol Jozef Safarik UniversityKosiceSlovak Republic
  4. 4.2nd Department of Internal Medicine, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
  5. 5.Department of Pharmacology and Toxicology, Faculty of PharmacyComenius UniversityBratislavaSlovak Republic

Personalised recommendations