Advertisement

Molecular Biology Reports

, Volume 42, Issue 4, pp 777–790 | Cite as

Towards a systemic paradigm in carcinogenesis: linking epigenetics and genetics

  • Ernesto Burgio
  • Lucia Migliore
Article

Abstract

For at least 30 years cancer has been defined as a genetic disease and explained by the so-called somatic mutation theory (SMT), which has dominated the carcinogenesis field. Criticism of the SMT has recently greatly increased, although still not enough to force all SMT supporters to recognize its limits. Various researchers point out that cancer appears to be a complex process concerning a whole tissue; and that genomic mutations, although variably deleterious and unpredictably important in determining the establishment of the neoplastic phenotype, are not the primary origin for a malignant neoplasia. We attempt to describe the inadequacies of the SMT and demonstrate that epigenetics is a more logical cause of carcinogenesis. Many previous models of carcinogenesis fall into two classes: (i) in which some biological changes inside cells alone lead to malignancy; and (ii) requiring changes in stroma/extracellular matrix. We try to make clear that in the (ii) model genomic instability is induced by persistent signals coming from the microenvironment, provoking epigenetic and genetic modifications in tissue stem cells that can lead to cancer. In this perspective, stochastic mutations of DNA are a critical by-product rather then the primary cause of cancer. Indirect support for such model of carcinogenesis comes from the in vitro and vivo experiments showing apparent ‘reversion’ of cancer phenotypes obtained via physiological factors of cellular differentiation (cytokines and other signaling molecules) or drugs, even if the key mutations are not ‘reversed’.

Keywords

Carcinogenesis Genetics Epigenetics 

References

  1. 1.
    Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799PubMedGoogle Scholar
  2. 2.
    Holland AJ, Cleveland DW (2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 10:478–487. doi: 10.1038/nrm2 PubMedCentralPubMedGoogle Scholar
  3. 3.
    Herrera LA, Prada D, Andonegui MA, Dueñas-González A (2008) The epigenetic origin of aneuploidy. Curr Genomics 9:43–50. doi: 10.2174/138920208783884883 PubMedCentralPubMedGoogle Scholar
  4. 4.
    Boveri T (1902) Über mehrpolige Mitosen als Mittel zur Analyse des Zellkerns. [Concerning multipolar mitoses as a means of analysing the cell nucleus.] C. Kabitzch, Würzburg and Verh. d. phys. med. Ges. zu Würzburg NF, Bd. 35Google Scholar
  5. 5.
    Boveri T (2008) Concerning The Origin of Malignant Tumours. Journal of Cell Science 121:1–84. doi: 10.1242/jcs.025742. http://www.newworldencyclopedia.org/entry/Cancer#cite_note-12
  6. 6.
    Nordling CO (1953) A new theory on the cancer-inducing mechanism. Br J Cancer 7:68–72. doi: 10.1038/bjc.1953.8 PubMedCentralPubMedGoogle Scholar
  7. 7.
    Knudson A (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823PubMedCentralPubMedGoogle Scholar
  8. 8.
    Feinberg AP, Vogelstein B, Droller MJ, Baylin SB, Nelkin BD (1983) Mutation affecting the 12th amino acid of the c-Ha-ras oncogene product occurs infrequently in human cancer. Science 220:1175–1177PubMedGoogle Scholar
  9. 9.
    Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170PubMedGoogle Scholar
  10. 10.
    Klein G (1981) The role of gene dosage and genetic transpositions in carcinogenesis. Nature 294:313–318PubMedGoogle Scholar
  11. 11.
    Rowley JD (1998) The critical role of chromosome translocations in human leukemias. Annu Rev Genet 32:495–519PubMedGoogle Scholar
  12. 12.
    Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51:3075–3079PubMedGoogle Scholar
  13. 13.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 7(100):57–70Google Scholar
  14. 14.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 4(144):646–674. doi: 10.1016/j.cell.2011.02.013 Google Scholar
  15. 15.
    Floor SL, Dumont JE, Maenhaut C, Raspe E (2012) Hallmarks of cancer: of all cancer cells, all the time? Trends Mol Med 18:509–515. doi: 10.1016/j.molmed.2012.06.005 PubMedGoogle Scholar
  16. 16.
    Delys L, Detours V, Franc B, Thomas G, Bogdanova T, Tronko M, Libert F, Dumont JE, Maenhaut C (2007) Gene expression and the biological phenotype of papillary thyroid carcinomas. Oncogene 26:7894–7903PubMedGoogle Scholar
  17. 17.
    Tomás G, Tarabichi M, Gacquer D, Hébrant A, Dom G, Dumont JE, Keutgen X, Fahey TJ, Maenhaut C, Detours V (2012) A general method to derive robust organ-specific gene expression-based differentiation indices: application to thyroid cancer diagnostic. Oncogene 31:4490–4498. doi: 10.1038/onc.2011.626 PubMedGoogle Scholar
  18. 18.
    Bertram JS (2000) The molecular biology of cancer. Mol Aspects Med 21:167–223PubMedGoogle Scholar
  19. 19.
    Croce CM (2008) Oncogenes and cancer. N Engl J Med 358:502–511. doi: 10.1056/NEJMra072367 PubMedGoogle Scholar
  20. 20.
    Kinzler KW, Vogelstein B (1997) Gatekeepers and caretakers. Nature 386(761):763Google Scholar
  21. 21.
    Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28PubMedGoogle Scholar
  22. 22.
    Wodarz D (2005) Somatic evolution of cancer cells. Semin Cancer Biol 15:436–450Google Scholar
  23. 23.
    Vineis P (2003) Cancer as an evolutionary process at the cell level: an epidemiological perspective. Carcinogenesis 24:1–6PubMedGoogle Scholar
  24. 24.
    Vineis P, Berwick M (2006) The population dynamics of cancer: a Darwinian perspective. Int J Epidemiol 35:1151–1159PubMedGoogle Scholar
  25. 25.
    DePinho RA (2000) The age of cancer. Nature 408:248–254PubMedGoogle Scholar
  26. 26.
    Balducci L, Ershler WB (2005) Cancer and ageing: a nexus at several levels. Nat Rev Cancer 5:655–662PubMedGoogle Scholar
  27. 27.
    Gorbunova V, Seluanov A, Mao Z, Hine C (2007) Changes in DNA repair during aging. Nucleic Acids Res 35:7466–7474PubMedCentralPubMedGoogle Scholar
  28. 28.
    Das K, Wu R (2008) A statistical model for the identification of genes governing the incidence of cancer with age. Theor Biol Med Model 5:7. doi: 10.1186/1742-4682-5-7 PubMedCentralPubMedGoogle Scholar
  29. 29.
    Soto AM, Sonnenschein C (2004) The somatic mutation theory of cancer: growing problems with the paradigm? BioEssays 26:1097–1107PubMedGoogle Scholar
  30. 30.
    Van Regenmortel MH (2004) Biological complexity emerges from the ashes of genetic reductionism. J Mol Recognit 17:145–148PubMedGoogle Scholar
  31. 31.
    Sonnenschein C, Soto AM (2000) Somatic mutation theory of carcinogenesis: why it should be dropped and replaced. Mol Carcinog 29:205–211PubMedGoogle Scholar
  32. 32.
    Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411:375–379PubMedGoogle Scholar
  33. 33.
    Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401PubMedGoogle Scholar
  34. 34.
    Mbeunkui F, Johann DJ Jr (2009) Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 63:571–582. doi: 10.1007/s00280-008-0881-9 PubMedCentralPubMedGoogle Scholar
  35. 35.
    Maffini MV, Soto AM, Calabro JM, Ucci AA, Sonnenschein C (2004) The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci 117(Pt 8):1495–1502PubMedGoogle Scholar
  36. 36.
    Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849PubMedGoogle Scholar
  37. 37.
    Radisky ES, Radisky DC (2007) Stromal induction of breast cancer: inflammation and invasion. Rev Endocr Metab Disord 8:279–287PubMedGoogle Scholar
  38. 38.
    Hu M, Yao J, Cai L, Bachman KE, van den Brûle F, Velculescu V, Polyak K (2005) Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet 37:899–905PubMedGoogle Scholar
  39. 39.
    Fiegl H, Millinger S, Goebel G, Müller-Holzner E, Marth C, Laird PW, Widschwendter M (2006) Breast cancer DNA methylation profiles in cancer cells and tumor stroma: association with HER-2/neu status in primary breast cancer. Cancer Res 66:29–33PubMedGoogle Scholar
  40. 40.
    Streubel B, Chott A, Huber D, Exner M, Jäger U, Wagner O, Schwarzinger I (2004) Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med 351:250–259PubMedGoogle Scholar
  41. 41.
    Chen JJ, Lin YC, Yao PL, Yuan A, Chen HY, Shun CT, Tsai MF, Chen CH, Yang PC (2005) Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol 23:953–964PubMedGoogle Scholar
  42. 42.
    Elenbaas B, Weinberg RA (2001) Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res 264:169–184PubMedGoogle Scholar
  43. 43.
    Sternlicht MD, Kedeshian P, Shao ZM, Safarians S, Barsky SH (1997) The human myoepithelial cell is a natural tumor suppressor. Clin Cancer Res 3:1949–1958PubMedGoogle Scholar
  44. 44.
    Soto AM, Sonnenschein C (2005) Emergentism as a default: cancer as a problem of tissue organization. J Biosci 30:103–118PubMedGoogle Scholar
  45. 45.
    Markey CM, Luque EH, Munoz De Toro M, Sonnenschein C, Soto AM (2001) In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod 65:1215–1223PubMedGoogle Scholar
  46. 46.
    Soto AM, Vandenberg LN, Maffini MV, Sonnenschein C (2008) Does breast cancer start in the womb? Basic Clin Pharmacol Toxicol 102:125–133PubMedCentralPubMedGoogle Scholar
  47. 47.
    Soto AM, Maffini MV, Sonnenschein C (2008) Neoplasia as development gone awry: the role of endocrine disruptors. Int J Androl 31:288–293PubMedCentralPubMedGoogle Scholar
  48. 48.
    Heng HH (2007) Cancer genome sequencing: the challenges ahead. BioEssays 29:783–794PubMedGoogle Scholar
  49. 49.
    Heng HH (2008) The gene-centric concept: a new liability? BioEssays 30:196–197. doi: 10.1002/bies.20711 PubMedGoogle Scholar
  50. 50.
    Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33PubMedGoogle Scholar
  51. 51.
    Duesberg P, Rasnick D (2000) Aneuploidy, the somatic mutation that makes cancer a species of its own. Cell Motil Cytoskeleton 47:81–107PubMedGoogle Scholar
  52. 52.
    Duesberg P, Li R, Rasnick D, Rausch C, Willer A, Kraemer A, Yerganian G, Hehlmann R (2000) Aneuploidy precedes and segregates with chemical carcinogenesis. Cancer Genet Cytogenet 119:83–93PubMedGoogle Scholar
  53. 53.
    Duesberg P, Li R, Fabarius A, Hehlmann R (2005) The chromosomal basis of cancer. Cell Oncol 27:293–318PubMedGoogle Scholar
  54. 54.
    Duesberg P, Li R, Fabarius A, Hehlmann R (2006) Aneuploidy and cancer: from correlation to causation. Contrib Microbiol 13:16–44PubMedGoogle Scholar
  55. 55.
    Satgé D, Bénard J (2008) Carcinogenesis in Down syndrome: what can be learned from trisomy 21? Semin Cancer Biol 18:365–371. doi: 10.1016/j.semcancer.2008.03.020 PubMedGoogle Scholar
  56. 56.
    1999–2007 Cancer Incidence and Mortality Data (2007) National Program of Cancer Registries. Betesda, Mary- land, USA CDCGoogle Scholar
  57. 57.
    Dix D (2003) On the role of genes relative to the environment in carcinogenesis. Mech Ageing Dev 124:323–332PubMedGoogle Scholar
  58. 58.
    Nachman KE, Fox M, Sheehan MC, Burke TA, Rodricks JV, Woodruff TJ (2011) Leveraging epidemiology to improve risk assessment. Open Epidemiolgy J 4:3–29Google Scholar
  59. 59.
    Bach JF (2002) The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 347:911–920PubMedGoogle Scholar
  60. 60.
    Hoover RN (2000) Cancer–nature, nurture, or both. N Engl J Med 343:135–136PubMedGoogle Scholar
  61. 61.
    Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85PubMedGoogle Scholar
  62. 62.
    Briggs D (2003) Environmental pollution and the global burden of disease. Br Med Bull 68:1–24PubMedGoogle Scholar
  63. 63.
    Cohen AJ, Ross Anderson H, Ostro B, Pandey KD, Krzyzanowski M, Künzli N, Gutschmidt K, Pope A, Romieu I, Samet JM, Smith K (2005) The global burden of disease due to outdoor air pollution. J Toxicol Environ Health A 68:1301–1307PubMedGoogle Scholar
  64. 64.
    Vineis P, Xun W (2009) The emerging epidemic of environmental cancers in developing countries. Ann Oncol 20:205–212. doi: 10.1093/annonc/mdn596 PubMedGoogle Scholar
  65. 65.
    Bleyer A, O’Leary M, Barr R, Ries LA (eds) (2006) Cancer epidemiology in older adolescents and young adults 15–29 years of age, including SEER incidence and survival: 1975–2000. NIH Pub. No. 06-5767. National Cancer Institute, Bethesda (MD)Google Scholar
  66. 66.
    Pritchard-Jones K, Kaatsch P, Steliarova-Foucher E, Stiller C, Coebergh JW (2006) Cancer in children and adolescents in Europe. Eur J Cancer 42:2183–2190PubMedGoogle Scholar
  67. 67.
    Greaves MF, Maia AT, Wiemels JL, Ford AM (2003) Leukemia in twins: lessons in natural history. Blood 102:2321–2333PubMedGoogle Scholar
  68. 68.
    Greaves M (2003) Pre-natal origins of childhood leukaemia. Rev Clin Exp Hematol 7:233–245PubMedGoogle Scholar
  69. 69.
    Mori H, Colman SM, Xiao Z, Ford AM, Healy LE, Donaldson C, Hows JM, Navarrete C, Greaves M (2002) Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci USA 99:8242–8247PubMedCentralPubMedGoogle Scholar
  70. 70.
    Greaves M (2005) In utero origins of childhood leukaemia. Early Hum Dev 81:123–129PubMedGoogle Scholar
  71. 71.
    Esteller M (2007) Cancer epigenomics: dNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298PubMedGoogle Scholar
  72. 72.
    Gerstein MB, Bruce C, Rozowsky JS, Zheng D, Du J, Korbel JO, Emanuelsson O, Zhang ZD, Weissman S, Snyder M (2007) What is a gene, post-ENCODE? History and updated definition. Genome Res 17(6):669–681Google Scholar
  73. 73.
    Mazzocchi F (2008) Complexity in biology. Exceeding the limits of reductionism and determinism using complexity theory. EMBO Rep 9(1):10–14. doi: 10.1038/sj.embor.7401147 PubMedCentralPubMedGoogle Scholar
  74. 74.
    Shapiro JA (2013) How life changes itself: the Read-Write (RW) genome. Phys Life Rev 10(3):287–323. doi: 10.1016/j.plrev.2013.07.001 PubMedGoogle Scholar
  75. 75.
    Radisky D, Hagios C, Bissell MJ (2001) Tumors are unique organs defined by abnormal signaling and context. Semin Cancer Biol 11(2):87–95PubMedGoogle Scholar
  76. 76.
    Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1(1):46–54PubMedCentralPubMedGoogle Scholar
  77. 77.
    Redig AJ, McAllister SS (2013) Breast cancer as a systemic disease: a view of metastasis. J Intern Med 274(2):113–126. doi: 10.1111/joim.12084 PubMedCentralPubMedGoogle Scholar
  78. 78.
    Bizzarri M, Cucina A, Conti F (2008) D’Anselmi F Beyond the oncogene paradigm: understanding complexity in cancerogenesis. Acta Biotheor 56(3):173–196. doi: 10.1007/s10441-008-9047-8 PubMedGoogle Scholar
  79. 79.
    Levin M (2012) Morphogenetic fields in embryogenesis, regeneration, and cancer: non-local control of complex patterning, Biosystems 109(3):243–621. doi:  10.1016/j.biosystems.2012.04.005
  80. 80.
    Baccarelli A, Hirt C, Pesatori AC, Consonni D, Patterson DG Jr, Bertazzi PA, Dölken G, Landi MT (2006) t(14;18) translocations in lymphocytes of healthy dioxin-exposed individuals from Seveso, Italy. Carcinogenesis 27:2001–2007PubMedGoogle Scholar
  81. 81.
    Agopian J, Navarro JM, Gac AC, Lecluse Y, Briand M, Grenot P, Gauduchon P, Ruminy P, Lebailly P, Nadel B, Roulland S (2009) Agricultural pesticide exposure and the molecular connection to lymphomagenesis. J Exp Med 206:1473–1483. doi: 10.1084/jem.20082842 PubMedCentralPubMedGoogle Scholar
  82. 82.
    Hayday AC, Gillies SD, Saito H, Wood C, Wiman K, Hayward WS, Tonegawa S (1984) Activation of a translocated human c-myc gene by an enhancer in the immunoglobulin heavy-chain locus. Nature 307:334–340PubMedGoogle Scholar
  83. 83.
    Kurtulus S, Tripathi P, Moreno-Fernandez ME, Sholl A, Katz JD, Grimes HL, Hildeman DA (2011) Bcl-2 allows effector and memory CD8+ T cells to tolerate higher expression of Bim. J Immunol 186:5729–5737. doi: 10.4049/jimmunol.1100102 PubMedCentralPubMedGoogle Scholar
  84. 84.
    Finke J, Fritzen R, Ternes P, Trivedi P, Bross KJ, Lange W, Mertelsmann R, Dölken G (1992) Expression of bcl-2 in Burkitt’s lymphoma cell lines: induction by latent Epstein–Barr virus genes. Blood 80:459–469PubMedGoogle Scholar
  85. 85.
    Strohman RC (1997) The coming Kuhnian revolution in biology. Nat Biotechnol 15:194–200PubMedGoogle Scholar
  86. 86.
    Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45PubMedGoogle Scholar
  87. 87.
    Turner BM (2002) Cellular memory and the histone code. Cell 111:285–291PubMedGoogle Scholar
  88. 88.
    Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21:163–167PubMedGoogle Scholar
  89. 89.
    Baylin SB, Herman JG (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16:168–174PubMedGoogle Scholar
  90. 90.
    Esteller M, Catasus L, Matias-Guiu X, Mutter GL, Prat J, Baylin SB, Herman JG (1999) hMLH1 promoter hypermethylation is an early event in human endometrial tumorigenesis. Am J Pathol 155:1767–1772PubMedCentralPubMedGoogle Scholar
  91. 91.
    Schuebel KE, Chen W, Cope L, Glockner SC, Suzuki H, Yi JM, Chan TA, Van Neste L, Van Criekinge W, van den Bosch S, van Engeland M, Ting AH, Jair K, Yu W, Toyota M, Imai K, Ahuja N, Herman JG, Baylin SB (2007) Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet 3:1709–1723PubMedGoogle Scholar
  92. 92.
    Chen SS, Raval A, Johnson AJ, Hertlein E, Liu TH, Jin VX, Sherman MH, Liu SJ, Dawson DW, Williams KE, Lanasa M, Liyanarachchi S, Lin TS, Marcucci G, Pekarsky Y, Davuluri R, Croce CM, Guttridge DC, Teitell MA, Byrd JC, Plass C (2009) Epigenetic changes during disease progression in a murine model of human chronic lymphocytic leukemia. Proc Natl Acad Sci USA 106:13433–13438PubMedCentralPubMedGoogle Scholar
  93. 93.
    Karpinets TV, Foy BD (2005) Tumorigenesis: the adaptation of mammalian cells to sustained stress environment by epigenetic alterations and succeeding matched mutations. Carcinogenesis 26:1323–1334PubMedGoogle Scholar
  94. 94.
    Cheung HH, Lee TL, Rennert OM, Chan WY (2009) DNA methylation of cancer genome. Birth Defects Res C Embryo Today 87:335–350. doi: 10.1002/bdrc.20163 PubMedCentralPubMedGoogle Scholar
  95. 95.
    Rollins RA, Haghighi F, Edwards JR, Das R, Zhang MQ, Ju J, Bestor TH (2006) Large-scale structure of genomic methylation patterns. Genome Res 16:157–163PubMedCentralPubMedGoogle Scholar
  96. 96.
    Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, Loewer S, Miller J, Schlaeger T, Daley GQ, Feinberg AP (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41:1350–1353. doi: 10.1038/ng.471Google Scholar
  97. 97.
    Jelinic P, Shaw P (2007) Loss of imprinting and cancer. J Pathol 211:261–268PubMedGoogle Scholar
  98. 98.
    Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92PubMedGoogle Scholar
  99. 99.
    Cheah MS, Wallace CD, Hoffman RM (1984) Hypomethylation of DNA in human cancer cells: a site-specific change in the c-myc oncogene. J Natl Cancer Inst 73:1057–1065PubMedGoogle Scholar
  100. 100.
    Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70:27–56. doi: 10.1016/B978-0-12-380866-0.60002-2 PubMedGoogle Scholar
  101. 101.
    Luczak MW, Jagodziński PP (2006) The role of DNA methylation in cancer development. Folia Histochem Cytobiol 44:143–154PubMedGoogle Scholar
  102. 102.
    Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM, Dryja TP (1991) Allele specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet 48:880–888PubMedCentralPubMedGoogle Scholar
  103. 103.
    Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM et al (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A 91:9700–9704PubMedCentralPubMedGoogle Scholar
  104. 104.
    Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D (1995) 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1:686–692PubMedGoogle Scholar
  105. 105.
    Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, Sidransky D, Baylin SB (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55:4525–4530PubMedGoogle Scholar
  106. 106.
    Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054PubMedGoogle Scholar
  107. 107.
    Geutjes EJ, Bajpe PK, Bernards R (2012) Targeting the epigenome for treatment of cancer. Oncogene 31:3827–3844. doi: 10.1038/onc.2011.552 PubMedGoogle Scholar
  108. 108.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838PubMedGoogle Scholar
  109. 109.
    Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, Beare D, Stebbings LA, McLaren S, Lin ML, McBride DJ, Varela I, Nik-Zainal S, Leroy C, Jia M, Menzies A, Butler AP, Teague JW, Quail MA, Burton J, Swerdlow H, Carter NP, Morsberger LA, Iacobuzio-Donahue C, Follows GA, Green AR, Flanagan AM, Stratton MR, Futreal PA, Campbell PJ (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40. doi: 10.1016/j.cell.2010.11.055 PubMedCentralPubMedGoogle Scholar
  110. 110.
    Shapiro JA (2009) Revisiting the central dogma in the 21st century. Ann N Y Acad Sci 1178:6–28. doi: 10.1111/j.1749-6632.2009.04990.x PubMedGoogle Scholar
  111. 111.
    Hauptmann S, Schmitt WD (2006) Transposable elements—is there a link between evolution and cancer? Med Hypotheses 66:580–591PubMedGoogle Scholar
  112. 112.
    Soto AM, Maffini MV, Sonnenschein C (2008) Neoplasia as development gone awry: the role of endocrine disruptors. Int J Androl 31:288–293PubMedCentralPubMedGoogle Scholar
  113. 113.
    López-Maury L, Marguerat S, Bähler J (2008) Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 9:583–593. doi: 10.1038/nrg2398 PubMedGoogle Scholar
  114. 114.
    Cyr AR, Domann FE (2011) The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid Redox Signal 15:551–589. doi: 10.1089/ars.2010.3492 PubMedCentralPubMedGoogle Scholar
  115. 115.
    Vineis P, Schatzkin A, Potter JD (2010) Models of carcinogenesis: an overview. Carcinogenesis 31(10):1703–1709. doi: 10.1093/carcin/bgq087 PubMedCentralPubMedGoogle Scholar
  116. 116.
    Remak R (1854) Ein beitrag zur entwickelungsgeschichte der krebshaften geschwulste. Deut Klin 6:70–174Google Scholar
  117. 117.
    Conheim J (1875) Congenitales, quergestreiftes muskelsarkon der nireren. Virchows Arch 65:64Google Scholar
  118. 118.
    Sell S (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51:1–28PubMedGoogle Scholar
  119. 119.
    Durante F (1874) Nesso fisio-pathologico tra la struttura dei nei materni e la genesi di alcuni tumori maligni. Arch Memori ed Osservazioni di Chirugia Practica 11:217–226Google Scholar
  120. 120.
    Cohnhein J (1889) Lectures in general pathology. The New Sydenham Society, LondonGoogle Scholar
  121. 121.
    Rippert V (1904) Ueber ein myosarcoma striocellulare des nierenbeckens und des ureters. Archiv für pathologische Anatomie und Physiologie und für klinische Medicin 106:282–295Google Scholar
  122. 122.
    Rippert V (1911) Das carcinom des menschen. F. Cohen, BonnGoogle Scholar
  123. 123.
    Sander K (1994) Of gradients and genes: developmental concepts of Theodor Boveri and his students. Roux Arch Dev Biol 203:295–297Google Scholar
  124. 124.
    Gilbert SF, Opitz JM, Raff RA (1996) Resynthesizing evolutionary and developmental biology. Dev Biol 173:357–372PubMedGoogle Scholar
  125. 125.
    Slaughter DP, Southwick HW, Smejkal W (1953) Field “cancerization” in oral stratified squamous epithelium: clinical implications of multicentric origin. Cancer 6:963–968PubMedGoogle Scholar
  126. 126.
    Sell S (2010) On the stem cell origin of cancer. Am J Pathol 176:2584–2594. doi: 10.2353/ajpath.2010.091064 PubMedCentralPubMedGoogle Scholar
  127. 127.
    Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH (2003) A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res 63:1727–1730PubMedGoogle Scholar
  128. 128.
    Andrews PW, Matin MM, Bahrami AR, Damjanov I, Gokhale P, Draper JS (2005) Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem Soc Trans 33:1526–1530PubMedGoogle Scholar
  129. 129.
    Askanazy M (1907) Die Teratome nach ihrem Bau, ihrem Verlauf, ihrer Genese und im Vergleich zum experimentellen Teratoid. Verhandl Deutsch Pathol 11:39–82Google Scholar
  130. 130.
    Martin CR (1980) Teratocarcinomas and mammalian embriogenesis. Science 209:768–776PubMedGoogle Scholar
  131. 131.
    Illmensee K, Mintz B (1976) Totipotency and normal differentiation of single teratocarcinoma cell cloned by injection into blastocysts. Proc Natl Acad Sci USA 73:549–553PubMedCentralPubMedGoogle Scholar
  132. 132.
    Mintz B, Ilmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci USA 72:3585–3589PubMedCentralPubMedGoogle Scholar
  133. 133.
    Papaioannou VE, Gardner RL, Mc Burney MV, Babinet C, Evans MJ (1978) Participation of cultured teratocarcinoma cells in mouse embriogenesis. J Embriol Exp Morphol 44:93–104Google Scholar
  134. 134.
    Sachs L (1995) The adventures of a biologist: prenatal diagnosis, hematopoiesis, leukemia, carcinogenesis and tumor suppression. Adv Cancer Res 66:1–40PubMedGoogle Scholar
  135. 135.
    Telerman A, Amson R (2009) The molecular programme of tumour reversion: the steps beyond malignant transformation. Nat Rev Cancer 9:206–216. doi: 10.1038/nrc2589 PubMedGoogle Scholar
  136. 136.
    Ginsburg H, Sachs L (1963) Formation of pure suspensions of mast cells in tissue culture by differentiation of lymphoid cells from the mouse thymus. J Natl Cancer Inst 31:1–39PubMedGoogle Scholar
  137. 137.
    Pluznik DH, Sachs L (1965) The cloning of normal mastcells in tissue culture. J Cell Comp Physiol 66:319–324Google Scholar
  138. 138.
    Ichikawa Y, Pluznik DH, Sachs L (1966) In vitro control of the development of macrophage and granulocyte colonies. Proc Natl Acad Sci USA 56:488–495PubMedCentralPubMedGoogle Scholar
  139. 139.
    Pluznik DH, Sachs L (1966) The induction of clones of normal mast cells by a substance from conditioned medium. Exp Cell Res 43:553–563PubMedGoogle Scholar
  140. 140.
    Sachs L (1987) The molecular control of blood cell development. Science 238:1374–1379PubMedGoogle Scholar
  141. 141.
    Eglitis MA, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94:4080–4085PubMedCentralPubMedGoogle Scholar
  142. 142.
    Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530PubMedGoogle Scholar
  143. 143.
    Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234PubMedGoogle Scholar
  144. 144.
    Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377PubMedGoogle Scholar
  145. 145.
    Sell S (2006) Stem cells in hepatocarcinogenesis. Cell Sci Rev 3:1742–8130Google Scholar
  146. 146.
    Pierce GB (1983) The cancer cell and its control by the embryo. Am J Pathol 113:117–124PubMedCentralPubMedGoogle Scholar
  147. 147.
    Potter VR (1978) Phenotypic diversity in experimental hepatomas: the concept of partially blocked ontogeny. Br J Cancer 38:1–23PubMedCentralPubMedGoogle Scholar
  148. 148.
    Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902PubMedGoogle Scholar
  149. 149.
    Lotem J, Sachs L (2002) Epigenetics wins over genetics: induction of differentiation in tumor cells. Semin Cancer Biol 12:339–346PubMedGoogle Scholar
  150. 150.
    Cruz FD, Matushansky I (2012) Solid tumor differentiation therapy—is it possible? Oncotarget 3:559–567PubMedGoogle Scholar
  151. 151.
    Pierce GB Jr, Verney EL (1961) An in vitro and in vivo study of differentiation in teratocarcinomas. Cancer 14:1017–1029PubMedGoogle Scholar
  152. 152.
    Nowak D, Stewart D, Koeffler HP (2009) Differentiation therapy of leukemia: 3 decades of development. Blood 113:3655–3665PubMedCentralPubMedGoogle Scholar
  153. 153.
    Huang ME1, Ye YC, Chen SR, Chai JR, Lu JX, Zhao L, Gu LJ, Wang ZY (1989) Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Haematol Blood Transfus 32: 88–96Google Scholar
  154. 154.
    Xu WP1, Zhang X, Xie WF (2014) Differentiation therapy for solid tumors J Dig Dis 15(4):159–165. doi:  10.1111/1751-2980.12122
  155. 155.
    Sachs L (1990) The control of growth and differentiation in normal and leukemic blood cells. Cancer 65:2196–2206PubMedGoogle Scholar
  156. 156.
    Lotem J, Sachs L (2002) Cytokine control of developmental programs in normal hematopoiesis and leukemia. Oncogene 21:3284–3294PubMedGoogle Scholar
  157. 157.
    Fibach E, Landau T, Sachs L (1972) Normal differentiation of myeloid leukaemic cells induced by a differentiation-inducing protein. Nat New Biol 237:276–278PubMedGoogle Scholar
  158. 158.
    Olsson I, Arnljots K, Gullberq U, Lantz M, Peetre C, Richter J (1988) Myeloid cell differentiation: the differentiation inducing factors of myeloid leukemia cells. Leukemia 2:16S–23SPubMedGoogle Scholar
  159. 159.
    Spira AI, Carducci MA (2003) Differentiation therapy. Curr Opin Pharmacol 3:338–343PubMedGoogle Scholar
  160. 160.
    Fibach E, Hayashi M, Sachs L (1973) Control of normal differentiation of myeloid leukemic cells to macrophages and granulocytes. Proc Natl Acad Sci USA 70:343–346PubMedCentralPubMedGoogle Scholar
  161. 161.
    Lotem J, Sachs L (1974) Different blocks in the differentiation of myeloid leukemic cells. Proc Natl Acad Sci USA 71:3507–3511PubMedCentralPubMedGoogle Scholar
  162. 162.
    Sachs L (1982) Normal developmental programmes in myeloid leukemia: regulatory proteins in the control of growth and differentiation. Cancer Surv 1:321–342Google Scholar
  163. 163.
    Cohen L, Sachs L (1981) Constitutive gene expression in myeloid leukemia and cell competence for induction of differentiation by the steroid dexamethasone. Proc Natl Acad Sci USA 78:353–357PubMedCentralPubMedGoogle Scholar
  164. 164.
    Gootwine E, Webb CG, Sachs L (1982) Participation of myeloid leukaemic cells injected into embryos in haematopoietic differentiation in adult mice. Nature 299:63–65PubMedGoogle Scholar
  165. 165.
    Webb CG, Gootwine E, Sachs L (1984) Developmental potential of myeloid leukemia cells injected into midgestation embryos. Dev Biol 101:221–224PubMedGoogle Scholar
  166. 166.
    Sachs L (1996) The control of hematopoiesis and leukemia: from basic biology to the clinic. Proc Natl Acad Sci USA 93:4742–4749PubMedCentralPubMedGoogle Scholar
  167. 167.
    Sachs L (1987) The Wellcome Foundation lecture, 1986. The molecular regulators of normal and leukaemic blood cells. Proc R Soc London B Biol Sci 231:289–312Google Scholar
  168. 168.
    Sachs L (1987) Cell differentiation and bypassing of genetic defects in the suppression of malignancy. Cancer Res 47:1981–1986PubMedGoogle Scholar
  169. 169.
    Sachs L (1978) Control of normal cell differentiation and the phenotypic reversion of malignancy in myeloid leukemia. Nature 274:535–539PubMedGoogle Scholar
  170. 170.
    Marks PA, Rifkind RA (1978) Erythroleukemic differentiation. Annu Rev Biochem 47:419–448PubMedGoogle Scholar
  171. 171.
    Degos L, Wang ZY (2001) All trans-retinoic acid in acute promyelocytic leukemia. Oncogene 20:7140–7145PubMedGoogle Scholar
  172. 172.
    Mack SC, Witt H, Piro RM, Gu L, Zuyderduyn S, Stütz AM, Wang X, Gallo M, Garzia L, Zayne K (2014) Epigenomic alterations define lethal CIMP-positive ependymonas of infancy. Nature 506:445–451. doi: 10.1038/nature13108 PubMedCentralPubMedGoogle Scholar
  173. 173.
    Shapiro JA (2014) Epigenetic control of mobile DNA as an interface between experience and genome change. Front Genet 25(5):87. doi: 10.3389/fgene.2014.00087 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.European Cancer and Environment Research Institute (ECERI)BrusselsBelgium
  2. 2.ISDE International Society of Doctors for Environment Scientific OfficeArezzoItaly
  3. 3.Department of Translational Research and New Technologies in Medicine and Surgery, Division of Medical GeneticsUniversity of PisaPisaItaly

Personalised recommendations