Advertisement

Molecular Biology Reports

, Volume 42, Issue 1, pp 245–251 | Cite as

Effect of IGF1, GH, and PIT1 markers on the genetic parameters of growth and reproduction traits in Canchim cattle

  • Daniela do Amaral Grossi
  • Marcos Eli Buzanskas
  • Natalia Vinhal Grupioni
  • Claudia Cristina Paro de Paz
  • Luciana Correia de Almeida Regitano
  • Maurício Mello de Alencar
  • Flávio Schramm Schenkel
  • Danísio Prado MunariEmail author
Article

Abstract

The availability of dense genomic information has increased genome-wide association studies for the bovine species; however research to assess the effect of single genes on production traits is still important to elucidate the genes functions. On this study the association of IGF1, GH, and PIT1 markers with growth and reproductive traits (birth weight, weaning weight, weight at 12 and 18 months of age, preweaning average daily weight gain, age and weight at first calving, and scrotal circumference at 12 and 18 months of age) were assessed by means of the variance component approach. The phenotypes were adjusted and then analyzed under two animal models, one which considered the polygenic and genotype (IGF1, GH or PIT1 markers) effects (Model 1), and the other which considers only the polygenic effect (Model 2). When the likelihood ratio test and the Bonferroni correction was applied at 5 % significance level, the genetic markers for the IGF1, GH, and PIT1 genes did not influence significantly the traits (p > 0.002). However, evidence of association of IGF1 with birth weight (p = 0.06) and GH with weight at first calving (p = 0.03) and with weight at 12 months of age (p = 0.08) was observed. In conclusion we could not confirm the associations between IGF1, GH, and PIT1 and growth traits that were previously reported in Canchim cattle, and no association was observed between these genes and reproductive traits. Future studies involving functional markers of IGF1, GH and PIT1 genes may help to clarify the role of these genes in growth and reproductive processes.

Keywords

Association analysis Candidate genes Identity by descent matrix Quantitative trait loci 

Notes

Acknowledgments

We would like to thank FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for the fellowship received by Grossi DA (06/60043-1) and Grupioni NV (08/09393-7). Buzanskas ME, Regitano LCA, Alencar MM, Munari DP, and Paz CCP were recipients of a CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) fellowship. We also thank the Centre for Genetic Improvement of Livestock for scientific support, especially Dr. Mehdi Sargolzaei for assistance with the statistical analyses, and Embrapa Pecuária Sudeste (Empresa Brasileira de Pesquisa Agropecuária) for providing data.

References

  1. 1.
    Henderson CH (1976) A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values. Biometrics 32:69–83CrossRefGoogle Scholar
  2. 2.
    Miller S (2010) Genetic improvement of beef cattle through opportunities in genomics. Rev Bras Zootec 39:247–255CrossRefGoogle Scholar
  3. 3.
    Goddard ME, Hayes BJ, Meuwissen THE (2010) Genomic selection in livestock populations. Genet Res 92:413–421CrossRefGoogle Scholar
  4. 4.
    Fernando RL, Grossman M (1989) Marker assisted selection using best linear unbiased prediction. Genet Sel Evol 21:467–477PubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hoeschele I (1993) Elimination of quantitative trait loci equations in an animal model incorporating genetic marker data. J Dairy Sci 76:1693–1713CrossRefGoogle Scholar
  6. 6.
    Van Arendonk JA, Tier B, Kinghorn BP (1994) Use of multiple genetic markers in prediction of breeding values. Genetics 137:319–329PubMedGoogle Scholar
  7. 7.
    George AW, Visscher PM, Haley CS (2000) Mapping quantitative trait loci in complex pedigrees: a two-step variance component approach. Genetics 156:2081–2092PubMedCentralPubMedGoogle Scholar
  8. 8.
    Breier BH, Gluckman PD (1991) The regulation of postnatal growth: nutritional influences on endocrine pathways and function of the somatotrophic axis. Livest Prod Sci 27:77–94CrossRefGoogle Scholar
  9. 9.
    Tuggle CK, Trenkle A (1996) Control of growth hormone synthesis. Domest Anim Endocrinol 13:1–33PubMedCrossRefGoogle Scholar
  10. 10.
    Werner H, Le Roith D (2000) New concepts in regulation and function of the insulin-like growth factors: implications for understanding normal growth and neoplasia. Cell Mol Life Sci 57:932–942PubMedCrossRefGoogle Scholar
  11. 11.
    Monget P, Fabre S, Mulsant P, Lecerf F, Elsen JM, Mazerbourg S, Pisselet C, Monniaux D (2002) Regulation of ovarian folliculogenesis by IGF and BMP system in domestic animals. Domest Anim Endocrinol 23:139–154PubMedCrossRefGoogle Scholar
  12. 12.
    Rivera GM, Chandrasekher YA, Evans AC, Giudice LC, Fortune JE (2001) A potential role for insulin-like growth factor binding protein-4 proteolysis in the establishment of ovarian follicular dominance in cattle. Biol Reprod 65:102–111PubMedCrossRefGoogle Scholar
  13. 13.
    Mello SP, Alencar MM, Silva LOC, Barbosa RT, Barbosa PF (2002) Estimativas de (co)variâncias e tendências genéticas para pesos em um rebanho Canchim. Rev Bras Zootec 31:1707–1714CrossRefGoogle Scholar
  14. 14.
    Andrade PC, Grossi DA, Paz CCP, Alencar MM, Regitano LCA, Munari DP (2008) Association of an insulin-like growth factor 1 gene microsatellite with phenotypic variation and estimated breeding values of growth traits in Canchim cattle. Anim Genet 39:480–485PubMedCrossRefGoogle Scholar
  15. 15.
    Kirkpatrick BW (1992) Identification of a conserved microsatellite site in the porcine and bovine insulin-like growth factor-I gene 5′ flank. Anim Genet 23:543–548PubMedCrossRefGoogle Scholar
  16. 16.
    Caetano AR, Bowling AT (1998) Characterization of a microsatellite in the promoter region of the IGF1 gene in domestic horses and other equids. Genome 41:70–73PubMedCrossRefGoogle Scholar
  17. 17.
    Vaessen N, Heutink P, Janssen JA, Witteman JCM, Testers L, Hofman A, Lamberts SWJ, Oostra BA, Pols HAP, Van Duijn CM (2001) A Polymorphism in the gene for IGF-I. Diabetes 50:637–642PubMedCrossRefGoogle Scholar
  18. 18.
    Lucy MC, Hauser SD, Eppard PJ, Krivi GG, Clark JH, Bauman DE, Collier RJ (1993) Variants of somatotropin in cattle: gene frequencies in major dairy breeds and associated milk production. Domest Anim Endocrinol 10:325–333PubMedCrossRefGoogle Scholar
  19. 19.
    Dierkes B, Kriegesmann B, Baumgartner BG, Brenig B (1998) Partial genomic structure of the bovine PIT1 gene and characterization of a HinfI transition polymorphism in exon 6. Anim Genet 29(5):405PubMedGoogle Scholar
  20. 20.
    Gouveia JJS, Regitano LCA (2007) Extraçao de DNA. In: Regitano LCA, Niciura SCM, Ibelli AMG, Gouveia JJS (eds) Protocolos de Biologia Molelucar Aplicada à Produção Animal, 1st edn. Embrapa, São Carlos, SP, pp 3–4Google Scholar
  21. 21.
    Carrijo SM, Alencar MM, Toral FLB, Regitano LCA (2008) Association of PIT1 genotypes with growth traits in Canchim cattle. Sci Agric 65:116–121CrossRefGoogle Scholar
  22. 22.
    Bishop MD, Kappes SM, Keele JW, Stone RT, Sunden SL, Hawkins GA, Toldo SS, Fries R, Grosz MD, Yoo J (1994) A genetic linkage map for cattle. Genetics 136:619–639PubMedCentralPubMedGoogle Scholar
  23. 23.
    Schlee P, Graml R, Schallenberger E, Schams D, Rottmann O, Olbrich-Bludau A, Pirchner F (1994) Growth hormone and insulin-like growth factor I concentrations in bulls of various growth hormone genotypes. Theor Appl Genet 88:497–500PubMedGoogle Scholar
  24. 24.
    Moody DE, Pomp D, Barendse W (1995) Restriction fragment length polymorphism in amplification products of the bovine PITI gene and assignment of PITI to bovine chromosome 1. Anim Genet 26:45–47PubMedCrossRefGoogle Scholar
  25. 25.
    Heath SC (2003) Loki 2.4.6—A package for multipoint linkage analysis on large pedigrees using Reversible jump Markov chain Monte Carlo. 38Google Scholar
  26. 26.
    Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2009) ASReml User Guide Release 3.0. 372Google Scholar
  27. 27.
    Self SG, Liang KY (2009) Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J Am Stat Assoc 82:605–610CrossRefGoogle Scholar
  28. 28.
    Goldman N, Whelan S (2000) Statistical tests of gamma-distributed rate heterogeneity in models of sequence evolution in phylogenetics. Mol Biol Evol 17:975–978PubMedCrossRefGoogle Scholar
  29. 29.
    Gutierrez JP, Cañon J, Goyache F (1997) Estimation of direct and maternal genetic parameters for pre-weaning traits in the Asturiana de los Valles beef cattle breed through animal and sire models. J Anim Breed Genet 114:261–266PubMedCrossRefGoogle Scholar
  30. 30.
    Maniatis N, Pollott GE (2003) The impact of data structure on genetic (co) variance components of early growth in sheep, estimated using an animal model with maternal effects. J Anim Sci 81:101–108PubMedGoogle Scholar
  31. 31.
    Gerstmayr S (1992) Impact of the data structure on the reliability of the estimated genetic parameters in an animal model with maternal effects. J Anim Breed Genet 109:321–336CrossRefGoogle Scholar
  32. 32.
    Regitano LCA, Azevedo JL, Vencovsky R, Packer IU, Barbosa PF, Rosa AJM, Silva NA, Etchegaray MAL, Coutinho LL (1999) Selection for breed.specific growth hormone and IGF-1 alleles in a synthetic beef cattle cross Canchim. Genet Mol Biol 22:531–537CrossRefGoogle Scholar
  33. 33.
    Castro-Pereira VM, Alencar MM, Barbosa RT (2007) Estimativas de parâmetros genéticos e de ganhos direto e indireto à seleção para características reprodutivas e de crescimento em um rebanho da raça Canchim. Rev Bras Zootec 36:1029–1036CrossRefGoogle Scholar
  34. 34.
    Mucari TB, Alencar MM, Barbosa PF, Barbosa RT (2007) Genetic analyses of days to calving and their relationships with other traits in a Canchim cattle herd. Genet Mol Biol 30:1070–1076CrossRefGoogle Scholar
  35. 35.
    Buzanskas ME, Grossi DA, Baldi F, Barrozo D, Silva LOC, Torres RAA Junior, Munari DP, Alencar MM (2010) Genetic associations between stayability and reproductive and growth traits in Canchim beef cattle. Livest Sci 132:107–112CrossRefGoogle Scholar
  36. 36.
    Silveira LGG, Furlan LR, Curi RA, Ferraz ALJ, Alencar MM, Regitano LCA, Martins CL, Arrigoni MB, Suguisawa L, Silveira AC, Oliveira HN (2008) Growth hormone 1 gene (GH1) polymorphisms as possible markers of the production potential of beef cattle using the Brazilian Canchim breed as a model. Genet Mol Biol 31:874–879CrossRefGoogle Scholar
  37. 37.
    Pereira AP, Alencar MM, Oliveira HN, Regitano LCA (2005) Association of GH and IGF-1 polymorphisms with growth traits in a synthetic beef cattle breed. Genet Mol Biol 28:230–236CrossRefGoogle Scholar
  38. 38.
    Silva MVGB, Martinez ML, Machado MA, Nascimento CS, Campos AL, Guimarães MFM, Azevedo ALS, Moita AKF, Lui JF (2006) Genes do eixo somatotrófico e características de crescimento numa população F2 de bovinos. Pesq Agropec Bras 41:981–986CrossRefGoogle Scholar
  39. 39.
    Kovács K, Völgyi-Csík J, Zsolnai A, Györkös I, Fésüs L (2006) Associations between the AluI polymorphism of growth hormone gene and production and reproduction traits in a Hungarian Holstein-Friesian bull dam population. Arch Anim Breed 49:236–249Google Scholar
  40. 40.
    De la Rosa Reyna XF, Montoya HM, Castrellón VV, Rincón AMS, Bracamonte MP, Vera WA (2010) Polymorphisms in the IGF1 gene and their effect on growth traits in Mexican beef cattle. Genet Mol Res 9:875–883CrossRefGoogle Scholar
  41. 41.
    Lirón JP, Prando AJ, Fernández ME, Ripoli MV, Rogberg-Muñoz A, Goszczynski DE, Posik DM, Peral-García P, Baldo A, Giovambattista G (2012) Association between GNRHR, LHR and IGF1 polymorphisms and timing of puberty in male Angus cattle. BMC Genet 13:26PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Schoenau W, Porciuncula PM, Zamberlan G, Mesquita FS, Vieira V, Oliveira JFC, Gonçalves PBD (2005) Associação entre polimorfismos do gene IGF-IR e características produtivas e reprodutivas em fêmeas bovinas da raça Holandesa. Arq Bras Med Vet Zootec 57:772–776CrossRefGoogle Scholar
  43. 43.
    Renaville R, Gengler N, Vrech E, Prandi A, Massart S, Corradini C, Bertozzi C, Mortiaux F, Burny A, Portetelle D (1997) Pit-1 gene polymorphism, milk yield, and conformation traits for Italian Holstein-Friesian bulls. J Dairy Sci 80:3431–3438PubMedCrossRefGoogle Scholar
  44. 44.
    Zhao Q, Davis ME, Hines HC (2004) Associations of polymorphisms in the Pit-1 gene with growth and carcass traits in Angus beef cattle. J Anim Sci 82:2229–2233PubMedGoogle Scholar
  45. 45.
    Di Stasio L, Sartore S, Albera A (2002) Lack of association of GH1 and POU1F1 gene variants with meat production traits in Piemontese cattle. Anim Genet 33:61–64PubMedCrossRefGoogle Scholar
  46. 46.
    Zhang C, Liu B, Chen H, Lan X, Lei C, Zhang Z, Zhang R (2009) Associations of a HinfI PCR-RFLP of POU1F1 gene with growth traits in Qinchuan cattle. Anim Biotechnol 20:71–74PubMedCrossRefGoogle Scholar
  47. 47.
    Renaville R, Gengler N, Parmentier F, Mortiaux F, Massart S, Bertozzi C, Burny A, Portetelle D (1997) Pit-1 gene HinfI RFLP and growth traits in double-muscled Belgian Blue cattle. J Anim Sci 75:146Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Daniela do Amaral Grossi
    • 1
  • Marcos Eli Buzanskas
    • 2
  • Natalia Vinhal Grupioni
    • 2
  • Claudia Cristina Paro de Paz
    • 3
    • 4
  • Luciana Correia de Almeida Regitano
    • 5
  • Maurício Mello de Alencar
    • 5
  • Flávio Schramm Schenkel
    • 1
  • Danísio Prado Munari
    • 2
    Email author
  1. 1.Centre for Genetic Improvement of Livestock, Department of Animal and Poultry ScienceUniversity of GuelphGuelphCanada
  2. 2.Departamento de Ciências ExatasUNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e VeterináriasSPBrazil
  3. 3.Instituto de ZootecniaCentro APTA de Bovinos de CorteSertãozinho, SPBrazil
  4. 4.Departamento de Genética, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloSPBrazil
  5. 5.Empresa Brasileira de Pesquisa AgropecuáriaEMBRAPA Pecuária SudesteSão CarlosBrazil

Personalised recommendations