Molecular Biology Reports

, Volume 42, Issue 1, pp 227–232 | Cite as

Significant interethnic differencies in functional variants of PON1 and P2RY12 genes in Roma and Hungarian population samples

  • Ingrid Janicsek
  • Csilla Sipeky
  • Judit Bene
  • Balazs Duga
  • Bela Melegh
  • Katalin Sümegi
  • Luca Jaromi
  • Lili Magyari
  • Bela Melegh


Antiplatelet therapy with clopidogrel is one of the most common therapies given to patients worldwide. However, the clinical efficacy and toxicity of clopidogrel is not constant in every patient due to interindividual variations. There are several factors that contribute to these interindividual differencies such as SNPs in genes of specific receptors and enzymes. PON1 (paraoxonase 1) plays an important role in the bioactivation of clopidogrel. Single nucleotide polymorphisms of this gene decrease the activity of paraoxonase enzyme and lead to an unefficient clopidogrel effect. P2RY12 (purinergic receptor P2Y, G-protein coupled, 12) gene is coding a receptor, which is situated on the surface of the platelets and plays a role in ADP-induced platelet aggregation. In this study we investigated 2 functional SNPs of PON1 gene (rs662 and rs854560) and 3 variants of the P2RY12 gene (rs2046934, rs6798347, rs6801273) in samples pooled from average Hungarian Roma and Hungarian population samples with PCR–RFLP method. For the PON1 variants we detected that the R allele frequency was significantly lower in the Roma group compared to the Hungarian population. (0.249 vs 0.318 p < 0.001). By contrast, the frequency of the M allele was significantly higher in Roma than in Hungarians (0.332 vs 0.290 p < 0.05). For the 3 P2RY12 variants we could find significant differencies only in rs2046934: the frequency of the CC genotype is 7 times higher in Hungarians than in Romas (1.4 vs 0.2 %, p < 0.05). The data presented here represent a unique genetic profile in Roma people that has not been reported for other populations.


PON1 P2RY12 Roma Hungarian Clopidogrel Ethnic 



This study was supported by the TÁMOP-4.2.1.B-10/2/KONV-2010-0002 scholarship of the Social Renewal Operational Programme, which is part of the New Hungary Development Plan.


  1. 1.
    Mackness B, Mackness MI, Arrol S, Turkie W, Durrington PN (1998) Effect of the human serum paraoxonase 55 and 192 genetic polymorphisms on the protection by high density lipoprotein against low density lipoprotein oxidative modification. FEBS Lett 423(1):57–60PubMedCrossRefGoogle Scholar
  2. 2.
    Bouman HJ, Schomig E, van Werkum JW, Velder J, Hackeng CM, Hirschhauser C, Waldmann C, Schmalz HG, ten Berg JM, Taubert D (2011) Paraoxonase-1 is a major determinant of clopidogrel efficacy. Nat Med 17(1):110–116. doi: 10.1038/nm.2281 PubMedCrossRefGoogle Scholar
  3. 3.
    Humbert R, Adler DA, Disteche CM, Hassett C, Omiecinski CJ, Furlong CE (1993) The molecular basis of the human serum paraoxonase activity polymorphism. Nat Genet 3(1):73–76. doi: 10.1038/ng0193-73 PubMedCrossRefGoogle Scholar
  4. 4.
    Garin MC, James RW, Dussoix P, Blanche H, Passa P, Froguel P, Ruiz J (1997) Paraoxonase polymorphism Met-Leu54 is associated with modified serum concentrations of the enzyme. A possible link between the paraoxonase gene and increased risk of cardiovascular disease in diabetes. J Clin Investig 99(1):62–66. doi: 10.1172/JCI119134 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409(6817):202–207. doi: 10.1038/35051599 PubMedCrossRefGoogle Scholar
  6. 6.
    Gachet C (2005) The platelet P2 receptors as molecular targets for old and new antiplatelet drugs. Pharmacol Ther 108(2):180–192. doi: 10.1016/j.pharmthera.2005.03.009 PubMedCrossRefGoogle Scholar
  7. 7.
    Savi P, Pereillo JM, Uzabiaga MF, Combalbert J, Picard C, Maffrand JP, Pascal M, Herbert JM (2000) Identification and biological activity of the active metabolite of clopidogrel. Thromb Haemost 84(5):891–896PubMedGoogle Scholar
  8. 8.
    Fontana P, Dupont A, Gandrille S, Bachelot-Loza C, Reny JL, Aiach M, Gaussem P (2003) Adenosine diphosphate-induced platelet aggregation is associated with P2Y12 gene sequence variations in healthy subjects. Circulation 108(8):989–995. doi: 10.1161/01.CIR.0000085073.69189.88 PubMedCrossRefGoogle Scholar
  9. 9.
    Gresham D, Morar B, Underhill PA, Passarino G, Lin AA, Wise C, Angelicheva D, Calafell F, Oefner PJ, Shen P, Tournev I, de Pablo R, Kucinskas V, Perez-Lezaun A, Marushiakova E, Popov V, Kalaydjieva L (2001) Origins and divergence of the Roma (gypsies). Am J Hum Genet 69(6):1314–1331. doi: 10.1086/324681 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Kalaydjieva L, Gresham D, Gooding R, Heather L, Baas F, de Jonge R, Blechschmidt K, Angelicheva D, Chandler D, Worsley P, Rosenthal A, King RH, Thomas PK (2000) N-myc downstream-regulated gene 1 is mutated in hereditary motor and sensory neuropathy-Lom. Am J Hum Genet 67(1):47–58. doi: 10.1086/302978 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Kalaydjieva L, Hallmayer J, Chandler D, Savov A, Nikolova A, Angelicheva D, King RH, Ishpekova B, Honeyman K, Calafell F, Shmarov A, Petrova J, Turnev I, Hristova A, Moskov M, Stancheva S, Petkova I, Bittles AH, Georgieva V, Middleton L, Thomas PK (1996) Gene mapping in Gypsies identifies a novel demyelinating neuropathy on chromosome 8q24. Nat Genet 14(2):214–217. doi: 10.1038/ng1096-214 PubMedCrossRefGoogle Scholar
  12. 12.
    Kalaydjieva L, Perez-Lezaun A, Angelicheva D, Onengut S, Dye D, Bosshard NU, Jordanova A, Savov A, Yanakiev P, Kremensky I, Radeva B, Hallmayer J, Markov A, Nedkova V, Tournev I, Aneva L, Gitzelmann R (1999) A founder mutation in the GK1 gene is responsible for galactokinase deficiency in Roma (Gypsies). Am J Hum Genet 65(5):1299–1307. doi: 10.1086/302611 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Kaneva R, Milanova V, Onchev G, Stoyanova V, Chakarova CH, Nikolova A, Hallmayer J, Belemezova M, Milenska T, Kirov G, Kremensky I, Kalaydjieva L, Jablensky A (1998) A linkage study of affective disorders in two Bulgarian Gypsy families: results for candidate regions on chromosomes 18 and 21. Psychiatr Genet 8(4):245–249PubMedCrossRefGoogle Scholar
  14. 14.
    Gupta N, Binukumar BK, Singh S, Sunkaria A, Kandimalla R, Bhansali A, Gill KD (2011) Serum paraoxonase-1 (PON1) activities (PONase/AREase) and polymorphisms in patients with type 2 diabetes mellitus in a North-West Indian population. Gene 487(1):88–95. doi: 10.1016/j.gene.2011.07.011 PubMedCrossRefGoogle Scholar
  15. 15.
    Antikainen M, Murtomaki S, Syvanne M, Pahlman R, Tahvanainen E, Jauhiainen M, Frick MH, Ehnholm C (1996) The Gln-Arg191 polymorphism of the human paraoxonase gene (HUMPONA) is not associated with the risk of coronary artery disease in Finns. J Clin Investig 98(4):883–885. doi: 10.1172/JCI118869 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Mackness B, Davies GK, Turkie W, Lee E, Roberts DH, Hill E, Roberts C, Durrington PN, Mackness MI (2001) Paraoxonase status in coronary heart disease: are activity and concentration more important than genotype? Arterioscler Thromb Vasc Biol 21(9):1451–1457PubMedCrossRefGoogle Scholar
  17. 17.
    Gardemann A, Philipp M, Hess K, Katz N, Tillmanns H, Haberbosch W (2000) The paraoxonase Leu-Met54 and Gln-Arg191 gene polymorphisms are not associated with the risk of coronary heart disease. Atherosclerosis 152(2):421–431PubMedCrossRefGoogle Scholar
  18. 18.
    Veiga L, Silva-Nunes J, Melao A, Oliveira A, Duarte L, Brito M (2011) Q192R polymorphism of the paraoxonase-1 gene as a risk factor for obesity in Portuguese women. Eur J Endocrinol/Eur Fed Endocr Soc 164(2):213–218. doi: 10.1530/EJE-10-0825 CrossRefGoogle Scholar
  19. 19.
    Aynacioglu AS, Cascorbi I, Mrozikiewicz PM, Nacak M, Tapanyigit EE, Roots I (1999) Paraoxonase 1 mutations in a Turkish population. Toxicol Appl Pharmacol 157(3):174–177. doi: 10.1006/taap.1999.8690 PubMedCrossRefGoogle Scholar
  20. 20.
    Hasselwander O, Savage DA, McMaster D, Loughrey CM, McNamee PT, Middleton D, Nicholls DP, Maxwell AP, Young IS (1999) Paraoxonase polymorphisms are not associated with cardiovascular risk in renal transplant recipients. Kidney Int 56(1):289–298. doi: 10.1046/j.1523-1755.1999.00521.x PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang Y, Zheng F, Du H, Krepinsky JC, Segbo JA, Zhou X (2006) Detecting the polymorphisms of paraoxonase (PON) cluster in Chinese Han population based on a rapid method. Clinica Chimica Acta (Int J Clin Chem) 365(1–2):98–103. doi: 10.1016/j.cca.2005.07.034 CrossRefGoogle Scholar
  22. 22.
    Ueno T, Shimazaki E, Matsumoto T, Watanabe H, Tsunemi A, Takahashi Y, Mori M, Hamano R, Fujioka T, Soma M, Matsumoto K, Kanmatsuse K (2003) Paraoxonase1 polymorphism Leu-Met55 is associated with cerebral infarction in Japanese population. Med Sci Monit 9(6):CR208-212Google Scholar
  23. 23.
    Poh R, Muniandy S (2007) Ethnic variations in paraoxonase1 polymorphism in the Malaysian population. Southeast Asian J Trop Med Public Health 38(2):392–397PubMedGoogle Scholar
  24. 24.
    Malin R, Lehtinen S, Luoma P, Nayha S, Hassi J, Koivula T, Lehtimaki T (2001) Serum lipid levels and M/L55 allele distribution of HDL paraoxonase gene in Saami and Finnish men. Int J Circumpolar Health 60(1):16–24PubMedGoogle Scholar
  25. 25.
    Bouman HJ, van Werkum JW, Rudez G, Leebeek FW, Kruit A, Hackeng CM, Ten Berg JM, de Maat MP, Ruven HJ (2010) The influence of variation in the P2Y12 receptor gene on in vitro platelet inhibition with the direct P2Y12 antagonist cangrelor. Thromb Haemost 103(2):379–386. doi: 10.1160/TH09-06-0367 PubMedCrossRefGoogle Scholar
  26. 26.
    Cavallari U, Trabetti E, Malerba G, Biscuola M, Girelli D, Olivieri O, Martinelli N, Angiolillo DJ, Corrocher R, Pignatti PF (2007) Gene sequence variations of the platelet P2Y12 receptor are associated with coronary artery disease. BMC Med Genet 8:59. doi: 10.1186/1471-2350-8-59 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Malek LA, Kisiel B, Spiewak M, Grabowski M, Filipiak KJ, Kostrzewa G, Huczek Z, Ploski R, Opolski G (2008) Coexisting polymorphisms of P2Y12 and CYP2C19 genes as a risk factor for persistent platelet activation with clopidogrel. Circ J 72(7):1165–1169PubMedCrossRefGoogle Scholar
  28. 28.
    Chen Q, Reis SE, Kammerer CM, McNamara DM, Holubkov R, Sharaf BL, Sopko G, Pauly DF, Merz CN, Kamboh MI, Group WS (2003) Association between the severity of angiographic coronary artery disease and paraoxonase gene polymorphisms in the National Heart, Lung, and Blood Institute-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study. Am J Hum Genet 72(1):13–22. doi: 10.1086/345312 CrossRefGoogle Scholar
  29. 29.
    Ito T, Yasue H, Yoshimura M, Nakamura S, Nakayama M, Shimasaki Y, Harada E, Mizuno Y, Kawano H, Ogawa H (2002) Paraoxonase gene Gln192Arg (Q192R) polymorphism is associated with coronary artery spasm. Hum Genet 110(1):89–94. doi: 10.1007/s00439-001-0654-6 PubMedCrossRefGoogle Scholar
  30. 30.
    Voetsch B, Benke KS, Panhuysen CI, Damasceno BP, Loscalzo J (2004) The combined effect of paraoxonase promoter and coding region polymorphisms on the risk of arterial ischemic stroke among young adults. Arch Neurol 61(3):351–356. doi: 10.1001/archneur.61.3.351 PubMedCrossRefGoogle Scholar
  31. 31.
    Ranade K, Kirchgessner TG, Iakoubova OA, Devlin JJ, DelMonte T, Vishnupad P, Hui L, Tsuchihashi Z, Sacks FM, Sabatine MS, Braunwald E, White TJ, Shaw PM, Dracopoli NC (2005) Evaluation of the paraoxonases as candidate genes for stroke: Gln192Arg polymorphism in the paraoxonase 1 gene is associated with increased risk of stroke. Stroke; a J Cereb Circ 36(11):2346–2350. doi: 10.1161/01.STR.0000185703.88944.7d CrossRefGoogle Scholar
  32. 32.
    Fontana P, Gaussem P, Aiach M, Fiessinger JN, Emmerich J, Reny JL (2003) P2Y12 H2 haplotype is associated with peripheral arterial disease: a case-control study. Circulation 108(24):2971–2973. doi: 10.1161/01.CIR.0000106904.80795.35 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ingrid Janicsek
    • 1
  • Csilla Sipeky
    • 1
  • Judit Bene
    • 1
  • Balazs Duga
    • 1
  • Bela Melegh
    • 1
  • Katalin Sümegi
    • 1
  • Luca Jaromi
    • 1
  • Lili Magyari
    • 1
  • Bela Melegh
    • 1
  1. 1.Department of Medical Genetics, Szentágothai János Research Center, Clinical CenterUniversity of PécsPécsHungary

Personalised recommendations