Molecular Biology Reports

, Volume 41, Issue 12, pp 8319–8332 | Cite as

Genome-wide identification and evolutionary analysis of algal LPAT genes involved in TAG biosynthesis using bioinformatic approaches

  • Namrata Misra
  • Prasanna Kumar Panda
  • Bikram Kumar Parida


Lysophosphatidyl acyltransferase (LPAT) is one of the major triacylglycerol synthesis enzymes, controlling the metabolic flow of lysophosphatidic acid to phosphatidic acid. Experimental studies in Arabidopsis have shown that LPAT activity is exhibited primarily by three distinct isoforms, namely the plastid-located LPAT1, the endoplasmic reticulum-located LPAT2, and the soluble isoform of LPAT (solLPAT). In this study, 24 putative genes representing all LPAT isoforms were identified from the analysis of 11 complete genomes including green algae, red algae, diatoms and higher plants. We observed LPAT1 and solLPAT genes to be ubiquitously present in nearly all genomes examined, whereas LPAT2 genes to have evolved more recently in the plant lineage. Phylogenetic analysis indicated that LPAT1, LPAT2 and solLPAT have convergently evolved through separate evolutionary paths and belong to three different gene families, which was further evidenced by their wide divergence at gene structure and sequence level. The genome distribution supports the hypothesis that each gene encoding a LPAT is not duplicated. Mapping of exon–intron structure of LPAT genes to the domain structure of proteins across different algal and plant species indicates that exon shuffling plays no role in the evolution of LPAT genes. Besides the previously defined motifs, several conserved consensus sequences were discovered which could be useful to distinguish different LPAT isoforms. Taken together, this study will enable the generation of experimental approximations to better understand the functional role of algal LPAT in lipid accumulation.


LPAT Microalgae Biofuel Motifs Phylogenetic analysis 

Supplementary material

11033_2014_3733_MOESM1_ESM.pdf (318 kb)
Supplementary material 1 (PDF 317 kb)
11033_2014_3733_MOESM2_ESM.pdf (97 kb)
Supplementary material 2 (PDF 97 kb)
11033_2014_3733_MOESM3_ESM.pdf (415 kb)
Supplementary material 3 (PDF 414 kb)
11033_2014_3733_MOESM4_ESM.pdf (379 kb)
Supplementary material 4 (PDF 379 kb)


  1. 1.
    Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54:593–607CrossRefPubMedGoogle Scholar
  2. 2.
    Athenstaedt K, Daum G (2006) The life cycle of neutral lipids: synthesis, storage and degradation. Cell Mol Life Sci 63:1355–1369CrossRefPubMedGoogle Scholar
  3. 3.
    Malcata FX (2011) Microalgae and biofuels: a promising partnership. Trends Biotechnol 29:542–549CrossRefPubMedGoogle Scholar
  4. 4.
    Wijffels RH, Barbosa M (2010) An outlook on microalgal biofuels. Science 329:796–799PubMedGoogle Scholar
  5. 5.
    Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131CrossRefPubMedGoogle Scholar
  6. 6.
    Courchesne NM, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31–41CrossRefPubMedGoogle Scholar
  7. 7.
    Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639CrossRefPubMedGoogle Scholar
  8. 8.
    Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Liang MH, Jiang JG (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52:395–408CrossRefPubMedGoogle Scholar
  10. 10.
    Maisonneuve S, Bessoule JJ, Lessire R, Delseny M, Roscoe TJ (2010) Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes. Plant Physiol 152:670–684PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Frentzen M (1998) Acyltransferases from basic science to modified seed oils. Fett Lipid 100:161–166CrossRefGoogle Scholar
  12. 12.
    Zou J, Katavic V, Giblin EM, Barton DL, Mackenzie SL, Keller WA, Hu X, Taylor DC (1997) Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9:909–992PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Xu K, Yang Y, Li X (2010) Ectopic expression of Crambe abyssinica lysophosphatidic acid acyltransferase in transgenic rapeseed increases its oil content. Afr J Biotechnol 9:3904–3910Google Scholar
  14. 14.
    Knutzon DS, Hayes TR, Wyrick A, Xiong H, Davies M, Voelker TA (1999) Lysophosphatidic acid acyltransferase from coconut endosperm mediates the insertion of laurate at the sn-2 position of triacylglycerols in lauric rapeseed oil and can increase total laurate levels. Plant Physiol 120:739–746PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Taylor DC, Barton DL, Giblin EM, Mackenzie SL, vanden Berg CGJ, McVetty PBE (1999) Microsomal lysophosphatidic acid acyltransferase from a Brassica oleracea cultivator incorporates erucic acid into the sn-2 position of seed triacylglycerols. Plant Physiol 109:409–420Google Scholar
  16. 16.
    Kim HU, Huang AHC (2004) Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis. Plant Physiol 134:1206–1216PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Kim HU, Li Y, Huang AHC (2005) Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell 17:1073–1089PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Brown AP, Brough CL, Kroon JTM, Slabas AR (1995) Identification of a cDNA that encodes a 1-acyl-sn-glycerol-3-phosphate acyltransferase from Limnanthes douglasii. Plant Mol Biol 29:267–278CrossRefPubMedGoogle Scholar
  19. 19.
    Hanke C, Wolter FP, Coleman J, Peterek G, Frentzen M (1995) A plant acyltransferase involved in triacylglycerols biosynthesis complements an Escherichia coli sn-1-acylglycerol-3-phosphate acyltransferase mutant. Eur J Biochem 232:806–810CrossRefPubMedGoogle Scholar
  20. 20.
    Brown AP, Coleman J, Tommey AM, Watson MD, Slabas AR (1994) Isolation and characterization of maize cDNA that complements a 1-acyl-sn-glycerol-3-phosphate acyltransferase mutant of Escherichia coli and encodes a protein which has similarities to other acyltransferases. Plant Mol Biol 26:211–223CrossRefPubMedGoogle Scholar
  21. 21.
    Bourgis F, Kader JC, Barret P, Renard M, Robinson D, Robinson C, Delseny M, Roscoe TJ (1999) A plastidial lysophosphatidic acid acyltransferase from oilseed rape. Plant Physiol 120:913–921PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Knutzon DS, Lardizabal KD, Nelsen JS, Bleibaum JL, Davies HM, Metz JC (1995) Cloning of a coconut endosperm cDNA encoding a 1-acyl-sn-glycerol-3-phosphate acyltransferase that accepts medium-chain length substrates. Plant Physiol 109:999–1006PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Chen SL, Huang JQ, Lei Y, Zhang YT, Ren XP, Chen YN, Jiang HF, Yan LY, Li YR, Liao BS (2012) Isolation and characterization of a gene encoding a putative lysophosphatidyl acyltransferase from Arachis hypogaea. J Biosci 37:1029–1039CrossRefPubMedGoogle Scholar
  24. 24.
    Yamashita A, Nakanishi H, Suzuki H, Kamata R, Tanaka K, Waku K, Sugiura T (2007) Topology of acyltransferase motifs and substrate specificity and accessibility in 1-acyl-sn-glycerol-3-phosphate acyltransferase 1. Biochim Biophys Acta 1771:1202–1215CrossRefPubMedGoogle Scholar
  25. 25.
    Ghosh AK, Chauhan N, Rajakumari S, Daum G, Rajasekharan R (2009) At4g24160, a soluble acyl-coenzyme a-dependent lysophosphatidic acid acyltransferase. Plant Physiol 151:869–881PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Cao YZ, Oo KC, Huang AHC (1990) Lysophosphatidate acyltransferase in the microsomes from maturing seeds of meadowfoam (Limnanthes alba). Plant Physiol 94:1199–1206PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Laurant P, Huang AHC (1992) Organ and development specific acyl-CoA lysophosphatidate acyltransferase in palm and meadowfoam. Plant Physiol 99:1711–1715CrossRefGoogle Scholar
  28. 28.
    Sivakumar D, Lahiri C, Chakravortty D (2013) Computational studies on histidine kinase protein BaeS to target multidrug-resistant Salmonella. Med Chem Res 22:1804–1811CrossRefGoogle Scholar
  29. 29.
    Sivakumar D, Sivaraman T (2011) In silico designing and screening of lead compounds to NS5-methyltransferase of dengue viruses. Med Chem 7:655–662CrossRefPubMedGoogle Scholar
  30. 30.
    Chen JE, Smith AG (2012) A look at diacylglycerol acyltransferase (DGATs) in algae. J Biotechnol 162:28–39CrossRefPubMedGoogle Scholar
  31. 31.
    Misra N, Panda PK (2013) In search of actionable targets for agrigenomics and microalgal biofuel production: sequence-structural diversity studies on algal and higher plants with a focus on GPAT protein. OMICS 17:173–186CrossRefPubMedGoogle Scholar
  32. 32.
    Huerlimann R, Heimann K (2013) Comprehensive guide to acetyl-carboxylases in algae. Crit Rev Biotechnol 33:49–65CrossRefPubMedGoogle Scholar
  33. 33.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Res 41:95–98Google Scholar
  34. 34.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Guruprasad K, Reddy BV, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 4:155–164CrossRefPubMedGoogle Scholar
  36. 36.
    Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–139CrossRefPubMedGoogle Scholar
  37. 37.
    Heath R, Rock CO (1998) A conserved histidine is essential for glycerolipid acyltransferase catalysis. J Bacteriol 180:1425–1430PubMedCentralPubMedGoogle Scholar
  38. 38.
    Lewin TM, Wang P, Coleman RA (1999) Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry 38:5764–5771CrossRefPubMedGoogle Scholar
  39. 39.
    Maisonneuve S, Guyot R, Roscoe T (2010) Life and death among plant lysophosphatidic acid acyltransferase. Plant Signal Behav 5:913–915PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Vicentini R, Menossi M (2009) The predicted subcellular localisation of the sugarcane proteome. Funct Plant Biol 36:242–250CrossRefGoogle Scholar
  41. 41.
    Keegstra K, Olsen LJ, Theg M (1989) Chloroplast precursors and their transport across the envelope. Annu Rev Plant Physiol Plant Mol Biol 40:471–501CrossRefGoogle Scholar
  42. 42.
    Jackson MR, Nilsson T, Peterson PA (1993) Retrieval of transmembrane proteins to the endoplasmic reticulum. J Cell Biol 121:317–332CrossRefPubMedGoogle Scholar
  43. 43.
    Yu B, Wakao S, Fan J, Benning C (2004) Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis. Plant Cell Physiol 45:503–510CrossRefPubMedGoogle Scholar
  44. 44.
    Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequences of the ultrasmall unicellular red algae Cyanidioschyzon merolae 10D. Nature 428:653–657CrossRefPubMedGoogle Scholar
  45. 45.
    Misra N, Panda PK, Parida BK, Mishra BK (2012) Phylogenomic study of lipid genes involved in microalgal biofuel production-candidate gene mining and metabolic pathway analysis. Evol Bioinform 8:545–564Google Scholar
  46. 46.
    Liu M, Wu S, Walch H, Grigoriev A (2005) Exon-domain correlation and its corollaries. Bioinformatics 21:3213–3216CrossRefPubMedGoogle Scholar
  47. 47.
    Kolkman JA, Stemmer WPC (2001) Directed evolution of proteins by exon shuffling. Nature 19:423–428Google Scholar
  48. 48.
    Gilbert W (1978) Why genes in pieces? Nature 271:501CrossRefPubMedGoogle Scholar
  49. 49.
    Patthy L (1987) Intron-dependent evolution: preferred types of exons and introns. FEBS Lett 214:1–7CrossRefPubMedGoogle Scholar
  50. 50.
    Taylor DC, Francis TF, Lozinsky S, Hoffman T, Giblin M, Marillia EF (2010) Cloning and characterization of a constitutive lysophosphatidic acid acyltransferase 2 (LPAT2) gene from Tropaeolum majus L. Open Plant Sci J 4:7–17CrossRefGoogle Scholar
  51. 51.
    Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman JL (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21:3435–3438CrossRefPubMedGoogle Scholar
  52. 52.
    Esnouf RM, Hamer R, Sussman JL, Silman I, Trudgian D, Yang ZR, Prilusky J (2006) Honing the in silico toolkit for detecting protein disorder. Acta Cryst D 62:1260–1266CrossRefGoogle Scholar
  53. 53.
    Pazos F, Pietrosemoli N, Garcia-Martin JA, Solano R (2013) Protein intrinsic disorder in plants. Front Plant Sci 4:1–5CrossRefGoogle Scholar
  54. 54.
    Turchetto-Zolet AC, Maraschin FS, deMorais GL, Cagilari A, Andrade CMB, Margis-Pinheiro M, Margis R (2011) Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis. BMC Evol Biol 11:263–277PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Gimeno RE, Cao J (2008) mammalian glycerol-3-phosphate acyltransferase: new genes for an old activity. J Lipid Res 49:2079–2088CrossRefPubMedGoogle Scholar
  56. 56.
    Eberhardt C, Gray PE, Tjoelker LW (1997) Human lysophosphatidic acid acyltransferase. cDNA cloning, expression, and localization to chromosome 9q34.3. J Biol Chem 272:20299–20305CrossRefPubMedGoogle Scholar
  57. 57.
    Brenner S (1988) The molecular evolution of genes and proteins: a tale of two serines. Nature 334:230–528CrossRefGoogle Scholar
  58. 58.
    Fan J, Andre C, Xu C (2011) A chloroplast pathway for the denovo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Lett 585:1985–1991CrossRefPubMedGoogle Scholar
  59. 59.
    Liu B, Benning C (2012) Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol 24:1–10CrossRefGoogle Scholar
  60. 60.
    Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J (2012) TAG, You’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotech 23:352–363CrossRefPubMedGoogle Scholar
  61. 61.
    Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat Commun 3:686PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Vieler A, Wu G, Tsai CH, Bullard B, Cornish AJ, Harvey C, Reca IB, Thornburg C, Achawanantakun R, Buehl CJ, Campbell MS, Cavalier D, Childs KL, Clark TJ, Deshpande R, Erickson E, Ferguson AA, Handee W, Kong Q, Li X, Liu B, Lundback S, Peng C, Roston RL, Sanjaya Simpson JP, TerBush A, Warakanont J, Zauner S, Farre EM, Hegg EL, Jiang N, Kuo MH, Lu Y, Niyogi KK, Ohlrogge J, Osteryoung KW, Shachar-Hill Y, Sears BB, Sun Y, Takahashi H, Yandell M, Shiu SH, Benning C (2012) Genome, functional gene annotation and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8:1–22CrossRefGoogle Scholar
  63. 63.
    Lykidis A, Ivanova N (2008) Genomic prospecting for microbial biofuel production. In: Wall JD, Harwood CS, Demain A (eds) Bioenergy. ASM Press, Washington, pp 407–417CrossRefGoogle Scholar
  64. 64.
    Ichihara K, Takahashi T, Fujii S (1988) Diacylglycerol acyltransferase in maturing safflower seeds: its influences on the fatty acid composition of triacylglycerol and on the rate of triacylglycerol synthesis. Biochim Biophys Acta 958:125–129CrossRefPubMedGoogle Scholar
  65. 65.
    Murata N, Tasaka Y (1997) Glycerol-3-phosphate acyltransferase in plants. Biochim Biophys Acta 1348:10–16CrossRefPubMedGoogle Scholar
  66. 66.
    Shekar S, Tumaney AW, Rao TJVS, Rajasekharan R (2002) Isolation of lysophosphatidic acid phosphatase from developing peanut cotyledons. Plant Physiol 128:988–996PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Saha S, Enugutti B, Rajakumari S, Rajasekharan R (2006) Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant Physiol 141:1533–1543PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Bhattacharya D, Medlin L (1998) Algal phylogeny and the origin of land plants. Plant Physiol 116:9–15PubMedCentralCrossRefGoogle Scholar
  69. 69.
    Reyes-Prieto A, Weber APM, Bhattacharya D (2007) The origin and establishment of the plastids in algae and plants. Annu Rev Genet 41:147–168CrossRefPubMedGoogle Scholar
  70. 70.
    Long M, Deutsch M, Wang W, Betran E, Brunet FG, Zhang J (2003) Origin of new genes: evidence from experimental and computational analyses. Genetica 118:171–182CrossRefPubMedGoogle Scholar
  71. 71.
    Liu M, Grigoriev A (2004) Proteins domains correlate strongly with exons in multiple eukaryotic genomes-evidence of exon shuffling. Trends Genet 20:399–403CrossRefPubMedGoogle Scholar
  72. 72.
    Bouche N, Bouchez D (2001) Arabidopsis gene knockout: phenotypes wanted. Curr Opin Plant Biol 4:111–117CrossRefPubMedGoogle Scholar
  73. 73.
    Drews GN, Yadegari R (2002) Development and function of the angiosperm female gametophyte. Annu Rev Genet 36:99–124CrossRefPubMedGoogle Scholar
  74. 74.
    Giroud C, Gerber A, Eichenberger W (1988) Lipids of Chlamydomonas reinhardtii: analysis of molecular species and intracellular sites of biosynthesis. Plant Cell Physiol 29:587–595Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Namrata Misra
    • 1
    • 2
  • Prasanna Kumar Panda
    • 1
    • 2
  • Bikram Kumar Parida
    • 2
  1. 1.Academy of Scientific and Innovative ResearchCSIR-Institute of Minerals and Materials TechnologyBhubaneswarIndia
  2. 2.Bioresources Engineering DepartmentCSIR-Institute of Minerals and Materials TechnologyBhubaneswarIndia

Personalised recommendations