Advertisement

Molecular Biology Reports

, Volume 41, Issue 11, pp 7133–7139 | Cite as

Autoimmune diseases association study with the KIAA1109–IL2–IL21 region in a Tunisian population

  • Dorra Bouzid
  • Hajer Fourati
  • Ali Amouri
  • Isabel Marques
  • Olfa Abida
  • Nabil Tahri
  • Carlos Penha-Gonçalves
  • Hatem Masmoudi
Article

Abstract

Autoimmune diseases (ADs) share several genetic factors resulting in similarity of disease mechanisms. For instance polymorphisms from the KIAA1109–interleukin 2 (IL2)–IL21 block in the 4q27 chromosome, has been associated with a number of autoimmune phenotypes. Here we performed a haplotype-based analysis of this AD related region in Tunisian patients. Ten single nucleotide polymorphisms (rs6534347, rs11575812, rs2069778, rs2069763, rs2069762, rs6852535, rs12642902, rs6822844, rs2221903, rs17005931) of the block were investigated in a cohort of 93 systemic lupus erythematosus (SLE), 68 ulcerative colitis (UC), 39 Crohn’s disease (CD) patients and 162 healthy control subjects of Tunisian origin. In SLE population, haplotypes AGCAGGGTC, AGAAGAGTC, AGAAGGGTC and AGCCGAGTC provided significant evidence of association with SLE risk (p = 0.013, 0.028, 0.018 and 0.048, respectively). In the UC population, haplotype AGCCGGGTC provided a susceptibility effect for UC (p = 0.025). In the CD population, haplotype CAGGCC showed a protective effect against the development of CD (p = 0.038). Haplotype AAGGTT provided significant evidence to be associated with CD risk (p = 0.007). Our results support the existence of the associations found in the KIAA1109/IL2/IL21 gene region with ADs, thus confirms that the 4q27 locus may contribute to the genetic susceptibility of ADs in the Tunisian population.

Keywords

Systemic lupus erythematosus Ulcerative colitis Crohn’s disease Tunisia KIAA1109–IL2–IL21 region Haplotype 

Notes

Acknowledgments

We thank Mr. João Costa for providing technical support in genotyping. This work was supported by a grant from the «Ministère de la recherche Scientifique et de la recherche scientifique» (Tunisia). Genotyping was supported by the Instituto Gulbenkian de Ciência, Oeiras, Portugal.

Supplementary material

11033_2014_3596_MOESM1_ESM.doc (40 kb)
Supplementary material 1 (DOC 40 kb)

References

  1. 1.
    Malek TR (2008) The biology of interleukin-2. Annu Rev Immunol 26:453–479PubMedCrossRefGoogle Scholar
  2. 2.
    Ettinger R, Kuchen S, Lipsky PE (2008) The role of IL-21 in regulating B-cell function in health and disease. Immunol Rev 223:60–86PubMedCrossRefGoogle Scholar
  3. 3.
    Hoyer KK, Dooms H, Barron L, Abbas AK (2008) Interleukin-2 in the development and control of inflammatory disease. Immunol Rev 226:19–28PubMedCrossRefGoogle Scholar
  4. 4.
    Todd JA, Walker NM, Cooper JD et al (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39:857–864PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Festen EA, Goyette P, Scott R et al (2009) Genetic variants in the region harbouring IL2/IL21 associated with ulcerative colitis. Gut 58:799–804PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Marquez A, Orozco G, Martinez A et al (2009) Novel association of the interleukin 2–interleukin 21 region with inflammatory bowel disease. Am J Gastroenterol 104:1968–1975PubMedCrossRefGoogle Scholar
  7. 7.
    Garner CP, Murray JA, Ding YC, Tien Z, van Heel DA, Neuhausen SL (2009) Replication of celiac disease UK genome-wide association study results in a US population. Hum Mol Genet 18:4219–4225PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Sawalha AH, Kaufman KM, Kelly JA et al (2008) Genetic association of interleukin-21 polymorphisms with systemic lupus erythematosus. Ann Rheum Dis 67:458–461PubMedCrossRefGoogle Scholar
  9. 9.
    Liu Y, Helms C, Liao W et al (2008) A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet 4:e1000041PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Albers HM, Kurreeman FA, Stoeken-Rijsbergen G et al (2009) Association of the autoimmunity locus 4q27 with juvenile idiopathic arthritis. Arthritis Rheum 60:901–904PubMedCrossRefGoogle Scholar
  11. 11.
    Sloka JS, Phillips PW, Stefanelli M, Joyce C (2005) Co-occurrence of autoimmune thyroid disease in a multiple sclerosis cohort. J Autoimmune Dis 2:9PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Neuhausen SL, Steele L, Ryan S et al (2008) Cooccurrence of celiac disease and other autoimmune diseases in celiacs and their first-degree relatives. J Autoimmun 31:160–165PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Robinson D Jr, Hackett M, Wong J et al (2006) Cooccurrence and comorbidities in patients with immune-mediated inflammatory disorders: an exploration using US healthcare claims data, 2001–2002. Curr Med Res Opin 22:989–1000PubMedCrossRefGoogle Scholar
  14. 14.
    Sloka S (2002) Observations on recent studies showing increased co-occurrence of autoimmune diseases. J Autoimmun 18:251–257PubMedCrossRefGoogle Scholar
  15. 15.
    Nath SK, Han S, Kim-Howard X et al (2008) A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat Genet 40:152–154PubMedCrossRefGoogle Scholar
  16. 16.
    Han S, Kim-Howard X, Deshmukh H et al (2009) Evaluation of imputation-based association in and around the integrin-alpha-M (ITGAM) gene and replication of robust association between a non-synonymous functional variant within ITGAM and systemic lupus erythematosus (SLE). Hum Mol Genet 18:1171–1180PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Hinds DA, Stuve LL, Nilsen GB et al (2005) Whole genome patterns of common DNA variation in three human populations. Science 307:1072–1079PubMedCrossRefGoogle Scholar
  18. 18.
    International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320CrossRefGoogle Scholar
  19. 19.
    Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40:1725PubMedCrossRefGoogle Scholar
  20. 20.
    Podolsky DK (1991) Inflammatory bowel disease (1). N Engl J Med 325:928–937PubMedCrossRefGoogle Scholar
  21. 21.
    Silverberg MS, Satsangi J, Ahmad T et al (2005) Toward and integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a working party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol 19(Suppl A):5–36Google Scholar
  22. 22.
    Bouzid D, Fourati H, Amouri A et al (2011) The CREM gene is involved in genetic predisposition to inflammatory bowel disease in the Tunisian population. Hum Immunol 72:1204–1209PubMedCrossRefGoogle Scholar
  23. 23.
    Gauderman WJ (2002) Sample size requirements for matched case–control studies of gene environment interaction. Stat Med 21:35–50PubMedCrossRefGoogle Scholar
  24. 24.
    Fourati H, Bouzid D, Abida O et al (2012) Genetic factors contributing to systemic lupus erythematosus in Tunisian patients. J Clin Cell Immunol 3:4CrossRefGoogle Scholar
  25. 25.
    van Heel DA, Franke L, Hunt KA et al (2007) A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat Genet 39:827–829PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Chistiakov DA, Voronova NV, Chistiakov PA (2008) The crucial role of IL-2/IL-2RA-mediated immune regulation in the pathogenesis of type 1 diabetes, an evidence coming from genetic and animal model studies. Immunol Lett 118:1–5PubMedCrossRefGoogle Scholar
  27. 27.
    Spolski R, Leonard WJ (2008) Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol 26:57–79PubMedCrossRefGoogle Scholar
  28. 28.
    Leonard WJ, Spolski R (2005) Interleukin-21: a modulator of lymphoid proliferation, apoptosis and differentiation. Nat Rev Immunol 5:688–698PubMedCrossRefGoogle Scholar
  29. 29.
    Sadlack B, Lohler J, Schorle H et al (1995) Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4_T cells. Eur J Immunol 25:3053–3059PubMedCrossRefGoogle Scholar
  30. 30.
    Sadlack B, Merz H, Schorle H et al (1993) Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75:253–261PubMedCrossRefGoogle Scholar
  31. 31.
    Van Assche G, Dalle I, Noman M et al (2003) A pilot study on the use of the humanized anti-interleukin-2 receptor antibody daclizumab in active ulcerative colitis. Am J Gastroenterol 98:369–376PubMedCrossRefGoogle Scholar
  32. 32.
    Herber D, Brown TP, Liang S et al (2007) IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression. J Immunol 178:3822–3830PubMedCrossRefGoogle Scholar
  33. 33.
    Ozaki K, Spolski R, Ettinger R et al (2004) Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol 173:5361–5371PubMedCrossRefGoogle Scholar
  34. 34.
    Vinuesa CG, Cook MC, Angelucci C et al (2005) A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435:452–458PubMedCrossRefGoogle Scholar
  35. 35.
    Hughes T, Kim-Howard X, Kelly JA et al (2011) Fine-mapping and transethnic genotyping establish IL2/IL21 genetic association with lupus and localize this genetic effect to IL21. Arthritis Rheum 63:1689–1697PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Glas J, Stallhofer J, Ripke S et al (2009) Novel genetic risk markers for ulcerative colitis in the IL2/IL21 region are in epistasis with IL23R and suggest a common genetic background for ulcerative colitis and celiac disease. Am J Gastroenterol 104:1737–1744PubMedCrossRefGoogle Scholar
  37. 37.
    Shi J, Zhou L, Zhernakova A et al (2011) Haplotype-based analysis of ulcerative colitis risk loci identifies both IL2 and IL21 as susceptibility genes in Han Chinese. Inflamm Bowel Dis 17:2472–2479PubMedCrossRefGoogle Scholar
  38. 38.
    Franke A, McGovern DP, Barrett JC et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42:1118–1125PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Dorra Bouzid
    • 1
  • Hajer Fourati
    • 1
  • Ali Amouri
    • 2
  • Isabel Marques
    • 3
  • Olfa Abida
    • 1
  • Nabil Tahri
    • 2
  • Carlos Penha-Gonçalves
    • 3
  • Hatem Masmoudi
    • 1
  1. 1.Immunology Department, Medicine School and Habib Bourguiba HospitalUniversité de SfaxSfaxTunisia
  2. 2.Gastroenterology Department, Hédi Chaker HospitalUniversité de SfaxSfaxTunisia
  3. 3.Instituto Gulbenkian de CiênciaOeirasPortugal

Personalised recommendations