Molecular Biology Reports

, Volume 41, Issue 9, pp 6317–6323 | Cite as

Beyond chemotherapy and targeted therapy: adoptive cellular therapy in non-small cell lung cancer

  • Junying WangEmail author
  • Xueju Wang


Non-small cell lung cancer (NSCLC) is an intractable disease for which effective treatment approaches are urgently needed. The ability to induce antigen-specific immune responses in patients with lung cancer has led to the development of immunotherapy as a novel concept for the treatment of NSCLC. Adoptive cellular therapy (ACT) represents an important advancement in cancer immunotherapy with the utilization of tumor infiltrating lymphocytes, cytokine-induced killer cells, natural killer cells and γδ T cells. In this study, we review recent advances in ACT for NSCLC in clinical trials and provide a perspective on the improvement in ACT and potential therapeutic approaches using engineered T cell therapy for NSCLC.


Adoptive immunotherapy Cellular therapy Non-small cell lung cancer 


Conflict of interest

No potential conflicts of interest were disclosed.


  1. 1.
    Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62(1):10–29PubMedCrossRefGoogle Scholar
  2. 2.
    Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S, Lin C, Leach C, Cannady RS, Cho H, Scoppa S, Hachey M, Kirch R, Jemal A, Ward E (2012) Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 62(4):220–241. doi: 10.3322/caac.21149 PubMedCrossRefGoogle Scholar
  3. 3.
    Kataki A, Scheid P, Piet M, Marie B, Martinet N, Martinet Y, Vignaud J-M (2002) Tumor infiltrating lymphocytes and macrophages have a potential dual role in lung cancer by supporting both host-defense and tumor progression. J Lab Clin Med 140(5):320–328PubMedCrossRefGoogle Scholar
  4. 4.
    Kuo SH, Chang DB, Lee YC, Lee YT, Luh KT (1998) Tumour-infiltrating lymphocytes in non-small cell lung cancer are activated T lymphocytes. Respirology 3(1):55–59PubMedCrossRefGoogle Scholar
  5. 5.
    Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM, Busund L-T (2008) Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res 14(16):5220–5227PubMedCrossRefGoogle Scholar
  6. 6.
    Petersen RP, Campa MJ, Sperlazza J, Conlon D, Joshi MB, Harpole DH Jr, Patz EF Jr (2006) Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 107(12):2866–2872. doi: 10.1002/cncr.22282 PubMedCrossRefGoogle Scholar
  7. 7.
    Woo EY, Yeh H, Chu CS, Schlienger K, Carroll RG, Riley JL, Kaiser LR, June CH (2002) Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 168(9):4272–4276PubMedCrossRefGoogle Scholar
  8. 8.
    H-y Fu, Li C, Yang W, Gai X-d, Jia T, Lei Y-m, Li Y (2013) FOXP3 and TLR4 protein expression are correlated in non-small cell lung cancer: implications for tumor progression and escape. Acta Histochem 115(2):151–157CrossRefGoogle Scholar
  9. 9.
    Zheng Y-W, Li R-M, Zhang X-W, Ren X-B (2013) Current adoptive immunotherapy in non-small cell lung cancer and potential influence of therapy outcome. Cancer Invest 31(3):197–205PubMedCrossRefGoogle Scholar
  10. 10.
    Medzhitov R, Janeway Jr. CA (1998) Innate immune recognition and control of adaptive immune responses. In: Seminars in immunology. Elsevier, p 351–353Google Scholar
  11. 11.
    Shi H, Liu L, Wang Z (2013) Improving the efficacy and safety of engineered T cell therapy for cancer. Cancer Lett 328(2):191–197PubMedCrossRefGoogle Scholar
  12. 12.
    Melioli G, Meta M, Semino C, Casartelli G, Pasquetti W, Biassoni R, Ratto G, Catrullo A, Moretta L, Guastella M (1994) Isolation and in vitro expansion of lymphocytes infiltrating non-small cell lung carcinoma: functional and molecular characterisation for their use in adoptive immunotherapy. Eur J Cancer 30(1):97–102CrossRefGoogle Scholar
  13. 13.
    Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA (2003) Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 26(4):332 (Hagerstown, Md: 1997)PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, Restifo NP, Robbins PF, Wunderlich JR (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 17(13):4550–4557PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Ratto GB, Zino P, Mirabelli S, Minuti P, Aquilina R, Fantino G, Spessa E, Ponte M, Bruzzi P, Melioli G (1996) A randomized trial of adoptive immunotherapy with tumor-infiltrating lymphocytes and interleukin-2 versus standard therapy in the postoperative treatment of resected non-small cell lung carcinoma. Cancer 78(2):244–251Google Scholar
  16. 16.
    Dudley ME, Gross CA, Langhan MM, Garcia MR, Sherry RM, Yang JC, Phan GQ, Kammula US, Hughes MS, Citrin DE (2010) CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res 16(24):6122–6131PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Ye Q, Song D, Poussin M, Yamamoto T, Best A, Li C, Coukos G, Powell DJ (2014) CD137 accurately identifies and enriches for naturally-occurring tumor-reactive T cells in tumor. Clin Cancer Res 20:44–55PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Carding SR, Egan PJ (2002) γδ T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2(5):336–345PubMedCrossRefGoogle Scholar
  19. 19.
    Hayday AC (2000) γδ cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18(1):975–1026PubMedCrossRefGoogle Scholar
  20. 20.
    Yoshida Y, Nakajima J, Wada H, Kakimi K (2011) γδ T-cell immunotherapy for lung cancer. Surg Today 41(5):606–611PubMedCrossRefGoogle Scholar
  21. 21.
    Dhillon S, Lyseng-Williamson KA (2008) Zoledronic acid: a review of its use in the management of bone metastases of malignancy. Drugs 68(4):507–534PubMedCrossRefGoogle Scholar
  22. 22.
    Kondo M, Izumi T, Fujieda N, Kondo A, Morishita T, Matsushita H, Kakimi K (2011) Expansion of human peripheral blood γδ T cells using zoledronate. J Vis Exp (55):e3182. doi: 10.3791/3182
  23. 23.
    Sakamoto M, Nakajima J, Murakawa T, Fukami T, Yoshida Y, Murayama T, Takamoto S, Matsushita H, Kakimi K (2011) Adoptive immunotherapy for advanced non-small cell lung cancer using zoledronate-expanded gammadeltaTcells: a phase I clinical study. J Immunother 34(2):202–211. doi: 10.1097/CJI.0b013e318207ecfb PubMedCrossRefGoogle Scholar
  24. 24.
    Nakajima J, Murakawa T, Fukami T, Goto S, Kaneko T, Yoshida Y, Takamoto S, Kakimi K (2010) A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous γδ T cells. Eur J Cardiothorac Surg 37(5):1191–1197PubMedCrossRefGoogle Scholar
  25. 25.
    Kang N, Zhou J, Zhang T, Wang L, Lu F, Cui Y, Cui L, He W (2009) Adoptive immunotherapy of lung cancer with immobilized anti-TCRγδ antibody-expanded human γδ T Cells in peripheral blood. Cancer Biol Ther 8(16):1540–1549PubMedCrossRefGoogle Scholar
  26. 26.
    Hanagiri T, Shigematsu Y, Kuroda K, Baba T, Shiota H, Ichiki Y, Nagata Y, Yasuda M, So T, Takenoyama M (2012) Antitumor activity of human γδ T cells transducted with CD8 and with T-cell receptors of tumor-specific cytotoxic T lymphocytes. Cancer science 103(8):1414–1419PubMedCrossRefGoogle Scholar
  27. 27.
    Parham P (2004) Immunology: NK cells lose their inhibition. Sci Signal 305(5685):786Google Scholar
  28. 28.
    Farag SS, Caligiuri MA (2006) Human natural killer cell development and biology. Blood Rev 20(3):123–137PubMedCrossRefGoogle Scholar
  29. 29.
    Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331(6013):44–49PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Iliopoulou EG, Kountourakis P, Karamouzis MV, Doufexis D, Ardavanis A, Baxevanis CN, Rigatos G, Papamichail M, Perez SA (2010) A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol Immunother 59(12):1781–1789PubMedCrossRefGoogle Scholar
  31. 31.
    Schneider T, Kimpfler S, Warth A, Schnabel PA, Dienemann H, Schadendorf D, Hoffmann H, Umansky V (2011) Foxp3+ regulatory T cells and natural killer cells distinctly infiltrate primary tumors and draining lymph nodes in pulmonary adenocarcinoma. J Thorac Oncol 6(3):432PubMedCrossRefGoogle Scholar
  32. 32.
    Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105(8):3051–3057PubMedCrossRefGoogle Scholar
  33. 33.
    Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Sci Signal 295(5562):2097Google Scholar
  34. 34.
    Parkhurst MR, Riley JP, Dudley ME, Rosenberg SA (2011) Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin Cancer Res 17(19):6287–6297PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Ljunggren HG, Malmberg KJ (2007) Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol 7(5):329–339PubMedCrossRefGoogle Scholar
  36. 36.
    Terme M, Ullrich E, Delahaye NF, Chaput N, Zitvogel L (2008) Natural killer cell–directed therapies: moving from unexpected results to successful strategies. Nat Immunol 9(5):486–494PubMedCrossRefGoogle Scholar
  37. 37.
    Cheng M, Chen Y, Xiao W, Sun R, Tian Z (2013) NK cell-based immunotherapy for malignant diseases. Cell mol immunol 10(3):230–252PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Jiang J, Wu C, Lu B (2013) Cytokine-induced killer cells promote antitumor immunity. J Transl Med 11(1):83PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Lu P-H, Negrin RS (1994) A novel population of expanded human CD3+CD56+ cells derived from T cells with potent in vivo antitumor activity in mice with severe combined immunodeficiency. J Immunol 153(4):1687–1696PubMedGoogle Scholar
  40. 40.
    Hontscha C, Borck Y, Zhou H, Messmer D, Schmidt-Wolf IGH (2011) Clinical trials on CIK cells: first report of the international registry on CIK cells (IRCC). J Cancer Res Clin Oncol 137(2):305–310PubMedCrossRefGoogle Scholar
  41. 41.
    Schmidt-Wolf I, Lefterova P, Mehta B, Fernandez L, Huhn D, Blume K, Weissman I, Negrin R (1993) Phenotypic characterization and identification of effector cells involved in tumor cell recognition of cytokine-induced killer cells. Exp Hematol 21(13):1673PubMedGoogle Scholar
  42. 42.
    Kim HM, Lim J, Park SK, Kang JS, Lee K, Lee CW, Lee KH, Yun MJ, Yang KH, Han G (2007) Antitumor activity of cytokine-induced killer cells against human lung cancer. Int Immunopharmacol 7(13):1802–1807PubMedCrossRefGoogle Scholar
  43. 43.
    Liu L, Sun M, Wang Z (2012) Adoptive T-cell therapy of B-cell malignancies: conventional and physiological chimeric antigen receptors. Cancer Lett 316(1):1–5PubMedCrossRefGoogle Scholar
  44. 44.
    Leemhuis T, Wells S, Scheffold C, Edinger M, Negrin RS (2005) A phase I trial of autologous cytokine-induced killer cells for the treatment of relapsed Hodgkin disease and non-Hodgkin lymphoma. Biol Blood Marrow Transplant 11(3):181–187PubMedCrossRefGoogle Scholar
  45. 45.
    Li H, Wang C, Yu J, Cao S, Wei F, Zhang W, Han Y, Ren X (2009) Dendritic cell-activated cytokine-induced killer cells enhance the anti-tumor effect of chemotherapy on non-small cell lung cancer in patients after surgery. Cytotherapy 11(8):1076–1083PubMedCrossRefGoogle Scholar
  46. 46.
    Yang L, Ren B, Li H, Yu J, Cao S, Hao X, Ren X (2012) Enhanced antitumor effects of DC-activated CIKs to chemotherapy treatment in a single cohort of advanced non-small-cell lung cancer patients. Cancer Immunol Immunother 62(1):65–73PubMedCrossRefGoogle Scholar
  47. 47.
    Shi SB, Ma TH, Li CH, Tang XY (2012) Effect of maintenance therapy with dendritic cells: cytokine-induced killer cells in patients with advanced non-small cell lung cancer. Tumori 98(3):314PubMedGoogle Scholar
  48. 48.
    Shi S, Wang R, Chen Y, Song H, Chen L, Huang G (2013) Combining antiangiogenic therapy with adoptive cell immunotherapy exerts better antitumor effects in non-small cell lung cancer models. PLoS ONE 8(6):e65757PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Chiriva-Internati M, Pandey A, Saba R, Kim M, Saadeh C, Lukman T, Chiaramonte R, Jenkins M, Cobos E, Jumper C (2012) Cancer testis antigens: a novel target in lung cancer. Int Rev Immunol 31(5):321–343PubMedCrossRefGoogle Scholar
  50. 50.
    Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29(7):917–924PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Stockert E, Jäger E, Chen YT, Scanlan MJ, Gout I, Karbach J, Arand M, Knuth A, Old LJ (1998) A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J Exp Med 187(8):1349–1354PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Groeper C, Gambazzi F, Zajac P, Bubendorf L, Adamina M, Rosenthal R, Zerkowski HR, Heberer M, Spagnoli GC (2007) Cancer/testis antigen expression and specific cytotoxic T lymphocyte responses in non small cell lung cancer. Int J Cancer 120(2):337–343PubMedCrossRefGoogle Scholar
  53. 53.
    Rao M, Chinnasamy N, Hong JA, Zhang Y, Zhang M, Xi S, Liu F, Marquez VE, Morgan RA, Schrump DS (2011) Inhibition of histone lysine methylation enhances cancer-testis antigen expression in lung cancer cells: implications for adoptive immunotherapy of cancer. Cancer Res 71(12):4192–4204PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Kelemen LE (2006) The role of folate receptor alpha in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer J Int du Cancer 119(2):243–250. doi: 10.1002/ijc.21712 CrossRefGoogle Scholar
  55. 55.
    O’Shannessy DJ, Yu G, Smale R, Fu Y-S, Singhal S, Thiel RP, Somers EB, Vachani A (2012) Folate receptor alpha expression in lung cancer: diagnostic and prognostic significance. Oncotarget 3(4):414PubMedCentralPubMedGoogle Scholar
  56. 56.
    Nunez MI, Behrens C, Woods DM, Lin H, Suraokar M, Kadara H, Hofstetter W, Kalhor N, Lee JJ, Franklin W (2012) High expression of folate receptor alpha in lung cancer correlates with adenocarcinoma histology and EGFR mutation. J Thorac Oncol 7(5):833PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Cagle PT, Zhai QJ, Murphy L, Low PS (2013) Folate receptor in adenocarcinoma and squamous cell carcinoma of the lung: potential target for folate-linked therapeutic agents. Arch Pathol Lab Med 137(2):241–244PubMedCrossRefGoogle Scholar
  58. 58.
    Song DG, Ye Q, Carpenito C, Poussin M, Wang LP, Ji C, Figini M, June CH, Coukos G, Powell DJ (2011) In vivo persistence, tumor localization, and antitumor activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (4-1BB). Cancer Res 71(13):4617–4627PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Song DG, Ye Q, Poussin M, Harms GM, Figini M, Powell DJ Jr (2012) CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood 119(3):696–706PubMedCrossRefGoogle Scholar
  60. 60.
    Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan D-AN, Feldman SA, Davis JL, Morgan RA, Merino MJ, Sherry RM (2011) T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 19(3):620–626PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18(4):843–851PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Casucci M, Bondanza A (2011) Suicide gene therapy to increase the safety of chimeric antigen receptor-redirected T lymphocytes. J Cancer 2:378PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Di Stasi A, Tey S-K, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, Straathof K, Liu E, Durett AG, Grilley B (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365(18):1673–1683PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL, Chew A, Carroll RG, Scholler J, Levine BL (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 70(22):9053–9061PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G, Chew A, Zhao Y, Levine BL, Albelda SM (2014) Mesothelin-specific chimeric antigen receptor mrna-engineered T cells induce antitumor activity in solid malignancies. Cancer Immunol Res 2:112–120Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Immunology, Norman Bethune College of MedicineJilin UniversityChangchunPeople’s Republic of China
  2. 2.Department of PathologyThe Third Hospital of Jilin UniversityChangchunPeople’s Republic of China

Personalised recommendations