Molecular Biology Reports

, Volume 41, Issue 8, pp 4881–4888 | Cite as

Next generation sequencing in cardiomyopathy: towards personalized genomics and medicine

  • Amitabh Biswas
  • V. R. Rao
  • Sandeep Seth
  • S. K. Maulik
Article

Abstract

Next generation sequencing (NGS) is perhaps one of the most exciting advances in the field of life sciences and biomedical research in the last decade. With the availability of massive parallel sequencing, human DNA blueprint can be decoded to explore the hidden information with reduced time and cost. This technology has been used to understand the genetic aspects of various diseases including cardiomyopathies. Mutations for different cardiomyopathies have been identified and cataloging mutations on phenotypic basis are underway and are expected to lead to new discoveries that may translate to novel diagnostic, prognostic and therapeutic targets. With ease in handling NGS, cost effectiveness and fast data output, NGS is now considered as a diagnostic tool for cardiomyopathy by providing targeted gene sequencing. In addition to the number of genetic variants that are identified in cardiomyopathies, there is a need of quicker and easy way to screen multiple genes associated with the disease. In this review, an attempt has been made to explain the NGS technology, methods and applications in cardiomyopathies and their perspective in clinical practice and challenges which are to be addressed.

Keywords

Phenotypic heterogeneity Pathogenicity Cardiomyopathies Next generation sequencing 

Supplementary material

11033_2014_3418_MOESM1_ESM.doc (108 kb)
Supplementary material 1 (DOC 108 kb)

References

  1. 1.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74(12):5463–5467PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Zhou X, Ren L, Meng Q, Li Y, Yu Y, Yu J (2010) The next-generation sequencing technology and application. Protein Cell 1:520–536CrossRefPubMedGoogle Scholar
  3. 3.
    Metzker ML (2010) Applications of next-generation sequencing, sequencing technologies: the next generation. Nat Rev Genet 11:31–46CrossRefPubMedGoogle Scholar
  4. 4.
    Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264CrossRefPubMedGoogle Scholar
  5. 5.
    Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem 6:287–303CrossRefGoogle Scholar
  6. 6.
    Miller FA, Hayeems RZ, Bytautas JP (2013) Testing personalized medicine: patient and physician expectations of next-generation genomic sequencing in late-stage cancer care. Eur J Hum Genet 22:391–395. doi:10.1038/ejhg.2013.158 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Papasavva T, van Ijcken WF, Kockx CE et al (2013) Next generation sequencing of SNPs for non-invasive prenatal diagnosis: challenges and feasibility as illustrated by an application to β-thalassaemia. Eur J Hum Genet 21(12):1403–1410PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Sobreira NL, Cirulli ET, Avramopoulos D et al (2010) Whole-genome sequencing of a single proband together with linkage analysis identifies a Mendelian disease gene. PLoS Genet. doi:10.1371/journal.pgen.100099 Google Scholar
  9. 9.
    Chen Z, Wang JL, Tang BS et al (2011) Using next-generation sequencing as a genetic diagnostic tool in rare autosomal recessive neurologic Mendelian disorders. Neurobiol Aging 34(10):2442.e11-7. doi:10.1016/j.neurobiolaging.2013.04.029 Google Scholar
  10. 10.
    Yang Y, Muzny DM, Jeffrey GR et al (2013) Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N Engl J Med 369:1502–1511PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Mutai H, Suzuki N, Shimizu A et al (2013) Diverse spectrum of rare deafness genes underlies early-childhood hearing loss in Japanese patients: a cross-sectional, multi-center next-generation sequencing study. Orphanet J Rare Dis 8:172PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Sankaran VG, Ghazvinian R, Do R et al (2012) Exome sequencing identifies GATA1 mutations resulting in Diamond–Blackfan anemia. J Clin Invest 122:2439–2443PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Boycott KM, Vanstone MR, Bulman DE, Mackenzie AE (2013) Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 14:681–691CrossRefPubMedGoogle Scholar
  14. 14.
    Harris TD, Buzby PR, Babcock H et al (2008) Single-molecule DNA sequencing of a viral genome. Science 320(5872):106–109CrossRefPubMedGoogle Scholar
  15. 15.
    Chaisson MJ, Pevzner PA (2008) Short read fragment assembly of bacterial genomes. Genome Res 18(2):324–330PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Pickrell JK, Marioni JC, Pai AA et al (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464(7289):768–772PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Hiller D, Jiang H, Xu W, Wong WH (2009) Identifiability of isoform deconvolution from junction arrays and RNA-Seq. Bioinformatics 25(23):3056–3059PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Kharchenko PV, Tolstorukov MY, Park PJ (2008) Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol 26(12):1351–1359PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Veeramah KR, Hammer MF (2014) The impact of whole-genome sequencing on the reconstruction of human population history. Nat Rev Genet 15:149–162CrossRefPubMedGoogle Scholar
  20. 20.
    Gravel S, Zakharia F, Moreno-Estrada A et al (2013) Reconstructing native American migrations from whole-genome and whole-exome data. PLoS Genet 9(12):e1004023PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15:205–213CrossRefPubMedGoogle Scholar
  22. 22.
    Bragg L, Tyson GW (2014) Metagenomics using next-generation sequencing environmental microbiology. Methods Mol Biol 1096:183–201CrossRefPubMedGoogle Scholar
  23. 23.
    Rogers GB, Bruce KD (2010) Next-generation sequencing in the analysis of human microbiota: essential considerations for clinical application. Mol Diagn Ther 14(6):343–350CrossRefPubMedGoogle Scholar
  24. 24.
    Ross JS, Cronin M (2011) Whole cancer genome sequencing by next-generation methods. Am J Clin Pathol 136(4):527–539CrossRefPubMedGoogle Scholar
  25. 25.
    Ullah S, John P, Bhatti A (2014) MicroRNAs with a role in gene regulation and in human diseases. Mol Biol Rep 41:225–232CrossRefPubMedGoogle Scholar
  26. 26.
    Zywicki M, Bakowska-Zywicka K, Polacek N (2012) Revealing stable processing products from ribosome-associated small RNAs by deep-sequencing data analysis. Nucleic Acids Res 40:4013–4024PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Friedländer MR, Chen W, Adamidi C et al (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26:407–415CrossRefPubMedGoogle Scholar
  28. 28.
    Biesecker LG, Spinner NB (2013) A genomic view of mosaicism and human disease. Nat Rev Genet 14:307–320. doi:10.1038/nrg3424 CrossRefPubMedGoogle Scholar
  29. 29.
    Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904. doi:10.1152/physrev.00045.2009 CrossRefPubMedGoogle Scholar
  30. 30.
    Albert TJ, Molla MN, Muzny DM et al (2007) Direct selection of human genomic loci by microarray hybridization. Nat Methods 4:903–905CrossRefPubMedGoogle Scholar
  31. 31.
    Hodges E, Xuan Z, Balija V et al (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39(12):1522–1527CrossRefPubMedGoogle Scholar
  32. 32.
    Quail MA, Smith M, Coupland P et al (2012) A tale of three next generation sequencing platforms: comparison of ion torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom 13:341CrossRefGoogle Scholar
  33. 33.
    Mook ORF, Haagmans MA, Soucy JF et al (2013) Targeted sequence capture and GS-FLX Titanium sequencing of 23 hypertrophic and dilated cardiomyopathy genes: implementation into diagnostics. J Med Genet 50:614–626. doi:10.1136/jmedgenet-2012-101231 PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Ng SB, Turner EH, Robertson PD et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461(7261):272–276PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Botstein D, Risch N (2003) Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 33(Suppl):228–237CrossRefPubMedGoogle Scholar
  36. 36.
    Reinhardt JA, Baltrus DA, Nishimura MT, Jeck WR, Jones CD, Dangl JL (2009) De novo assembly using low-coverage short read sequence data from the rice pathogen Pseudomonas syringae pv. oryzae. Genome Res 19(2):294–305PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Nowrousian M, Stajich JE, Chu M et al (2010) De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis. PLoS Genet 6(4):e1000891PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Shin SC, Ahn DH, Kim SJ, Lee H et al (2013) Advantages of single-molecule real-time sequencing in high-GC content genomes. PLoS One 8(7):e68824. doi:10.1371/journal.pone.0068824 PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO (2009) Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980–2006. Circulation 119:1085–1092CrossRefPubMedGoogle Scholar
  40. 40.
    Elliott PM, Poloniecki J, Dickie S, Sharma S et al (2000) Sudden death in hypertrophic cardiomyopathy: identification of high risk patients. J Am Coll Cardiol 36:2212–2218CrossRefPubMedGoogle Scholar
  41. 41.
    Lopes LR, Zekavati A, Syrris P et al (2013) Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J Med Genet 50:228–239PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Meder B, Haas J, Keller A et al (2011) Targeted next-generation sequencing for the molecular genetic diagnostics of cardiomyopathies. Circ Cardiovasc Genet 4:110–122CrossRefPubMedGoogle Scholar
  43. 43.
    Maron BJ, Towbin JA, Thiene G et al (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113:1807–1816CrossRefPubMedGoogle Scholar
  44. 44.
    Richardson P, McKenna W, Bristow M et al (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology task force on the definition and classification of cardiomyopathies. Circulation 93(5):841–842CrossRefPubMedGoogle Scholar
  45. 45.
    Elliott P, Anderson B, Arbustini E et al (2008) Classification of cardiomyopathies: a position statement from the European working group on myocardial and pericardial diseases. Eur Heart J 29:270–276CrossRefPubMedGoogle Scholar
  46. 46.
    ARVD/C Genetic Variants Database. Accessed 6 March 2014Google Scholar
  47. 47.
    Human Genetic Mutation Database [HGMD]. Accessed June 2013.Google Scholar
  48. 48.
    Teare D (1958) Asymmetrical hypertrophy of the heart in young adults. Br Heart J 20:1–8PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Hollman A, Goodwin JF, Teare D, Renwick JW (1960) A family with obstructive cardiomyopathy (asymmetrical hypertrophy). Br Heart J 321:1372–1378Google Scholar
  50. 50.
    Greaves SC, Roche AHG, Neutze JM, Whitlock RML, Veale AMO (1987) Inheritance of hypertrophic cardiomyopathy: a cross sectional and Mmode echocardiographic study of 50 families. Br Heart J 58:259–266PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Geisterfer-Lowrance AA, Kass S, Tanigawa G et al (1990) A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 62:999–1006CrossRefPubMedGoogle Scholar
  52. 52.
    Elliot P (2000) Diagnosis and management of dilated cardiomyopathy. Heart 84:106CrossRefGoogle Scholar
  53. 53.
    Ku L, Feiger J, Taylor M, Mestroni L (2003) Familial dilated cardiomyopathy. Circulation 108:e118–e121CrossRefPubMedGoogle Scholar
  54. 54.
    Hershberger RE, Morales A, Siegfried JD (2010) Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals. Genet Med 12(11):655–667PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Biswas A, Das S, Seth S et al (2012) Role of modifying genes on the severity of rare mutation of MYH7 gene in hypertrophic obstructive cardiomyopathy. J Clin Exp Cardiol 3:225. doi:10.4172/2155-9880.1000225 CrossRefGoogle Scholar
  56. 56.
    Raju H, Alberg C, Sagoo GS, Burton H, Behr ER (2011) Inherited cardiomyopathies. BMJ 343:d6966CrossRefPubMedGoogle Scholar
  57. 57.
    Wells QS, Becker JR, Su YR et al (2013) Whole exome sequencing identifies a causal RBM20 mutation in a large pedigree with familial dilated cardiomyopathy. Circ Cardiovasc Genet 6(4):317–326. doi:10.1161/CIRCGENETICS.113.000011 PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Campbell N, Sinagra G, Jones KL et al (2013) Whole exome sequencing identifies a troponin T mutation hot spot in familial dilated cardiomyopathy. PLoS One 8(10):e78104PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Andreasen C, Neilsen JB, Refsgaard L et al (2013) New population-based exome data are questioning the pathogenicity of previously cardiomyopathy-associated genetic variants. Eur J Hum Genet 21:918–928PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Majewski J, Schwartzentruber J, Lalonde E, Montpetit A, Jabado N (2011) What can exome sequencing do for you? J Med Genet 48:580–589CrossRefPubMedGoogle Scholar
  61. 61.
    Hershberger RE, Lindenfeld J, Mestroni L, Seidman CE, Taylor MR, Towbin JA (2009) Genetic evaluation of cardiomyopathy: a Heart Failure Society of America practice guideline. J Card Fail 15(2):83–97CrossRefPubMedGoogle Scholar
  62. 62.
    Yancy CW, Jesup M, Bozkurt B et al (2013) 2013 ACCF/AHA guideline for the management of heart failure a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation 128:e240–e327CrossRefPubMedGoogle Scholar
  63. 63.
    Michels M, Hoedemaekers YM, Kofflard MJ et al (2007) Familial screening and genetic counseling in hypertrophic cardiomyopathy: the Rotterdam experience. Neth Heart J 15:184–190PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Taylor MRG, Carniel E, Mestroni L (2004) Familial hypertrophic cardiomyopathy: clinical features, molecular genetics and molecular genetic testing. Expert Rev Mol Diagn 4(1):99–113CrossRefPubMedGoogle Scholar
  65. 65.
    Ghezzi D, Baruffini E, Haack TB et al (2012) Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am J Hum Genet 90:1079–1087PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Arimura T, Ishikawa T, Nunoda S et al (2011) Dilated cardiomyopathy-associated BAG3 mutations impair Z-disc assembly and enhance sensitivity to apoptosis in cardiomyocytes. Hum Mutat 32(12):1481–1491CrossRefPubMedGoogle Scholar
  67. 67.
    Theis JL, Sharpe KM, Matsumoto ME et al (2011) Homozygosity mapping and exome sequencing reveal GATAD1 mutation in autosomal recessive dilated cardiomyopathy. Circ Cardiovasc Genet 4(6):585–594PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Amitabh Biswas
    • 1
  • V. R. Rao
    • 1
  • Sandeep Seth
    • 2
  • S. K. Maulik
    • 3
  1. 1.Department of AnthropologyUniversity of DelhiDelhiIndia
  2. 2.Department of CardiologyAIIMSNew DelhiIndia
  3. 3.Department of PharmacologyAIIMSNew DelhiIndia

Personalised recommendations