Molecular Biology Reports

, Volume 41, Issue 8, pp 5413–5427 | Cite as

Molecular characterization and expressional affirmation of the beta proteasome subunit cluster in rock bream immune defense

  • Saranya Revathy Kasthuri
  • Navaneethaiyer Umasuthan
  • Ilson Whang
  • Bong-Soo Lim
  • Hyung-Bok Jung
  • Myung-Joo Oh
  • Sung-Ju Jung
  • Sang-Yeob Yeo
  • Sung Yeon Kim
  • Jehee Lee


Immunoproteasomes are primarily induced upon infection and formed by replacing constitutive beta subunits with inducible beta subunits which possess specific cleavage properties that aid in the release of peptides necessary for MHC class I antigen presentation. In this study, we report the molecular characterization and expression analysis of the inducible immunosubunits PSMB8, PSMB9, PSMB9-L, and PSMB10 from rock bream, Oplegnathus fasciatus. The three subunits shared common active site residues and were placed in close proximity to fish homologues in the reconstructed phylogenetic tree, in which the mammalian homologues formed separate clades, indicating a common ancestral origin. The rock bream immunosubunits possessed higher identity and similarity with the fish homologues. RbPSMB8, RbPSMB9, RbPSMB9-L, and RbPSMB10 were multi-exonic genes with 6, 6, 7 and 8 exons, respectively. These four genes were constitutively expressed in all the examined tissues. Immunostimulants such as lipopolysaccharide and poly I:C induced RbPSMB8, RbPSMB9, RbPSMB9-L, and RbPSMB10 in liver and head kidney, suggesting their possible involvement in immune defense in rock bream.


Immunoproteasome Low molecular weight protein 7 Low molecular weight protein 2 Low molecular weight protein 2-like Multi-catalytic endopeptidase complex-like 1 



This study was supported by a National Fisheries Research and Development Institute (RP-2014-BT-011) Grant.

Supplementary material

11033_2014_3413_MOESM1_ESM.doc (173 kb)
Supplementary material 1 (DOC 173 kb)


  1. 1.
    Pickart CM, Cohen RE (2004) Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5(3):177–187. doi:10.1038/nrm1336 CrossRefPubMedGoogle Scholar
  2. 2.
    Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513. doi:10.1146/annurev.biochem.78.081507.101607 PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Xie Y (2010) Structure, assembly and homeostatic regulation of the 26S proteasome. J Mol Cell Biol 2(6):308–317. doi:10.1093/jmcb/mjq030 CrossRefPubMedGoogle Scholar
  4. 4.
    Kim HM, Yu Y, Cheng Y (2011) Structure characterization of the 26S proteasome. Biochim Biophys Acta 1809(2):67–79. doi:10.1016/j.bbagrm.2010.08.008 PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Macagno A, Gilliet M, Sallusto F, Lanzavecchia A, Nestle FO, Groettrup M (1999) Dendritic cells up-regulate immunoproteasomes and the proteasome regulator PA28 during maturation. Eur J Immunol 29(12):4037–4042. doi:10.1002/(SICI)1521-4141(199912)29:12<4037:AID-IMMU4037>3.0.CO;2-T CrossRefPubMedGoogle Scholar
  6. 6.
    Fruh K, Gossen M, Wang K, Bujard H, Peterson PA, Yang Y (1994) Displacement of housekeeping proteasome subunits by MHC-encoded LMPs: a newly discovered mechanism for modulating the multicatalytic proteinase complex. EMBO J 13(14):3236–3244PubMedCentralPubMedGoogle Scholar
  7. 7.
    Tanaka K (1995) Molecular biology of proteasomes. Mol Biol Rep 21(1):21–26CrossRefPubMedGoogle Scholar
  8. 8.
    Murata S, Yashiroda H, Tanaka K (2009) Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol 10(2):104–115.
  9. 9.
    Monaco JJ, Nandi D (1995) The genetics of proteasomes and antigen processing. Annu Rev Genet 29:729–754. doi:10.1146/ CrossRefPubMedGoogle Scholar
  10. 10.
    Sijts EJ, Kloetzel PM (2011) The role of the proteasome in the generation of MHC class I ligands and immune responses. Cell Mol Life Sci (CMLS) 68(9):1491–1502. doi:10.1007/s00018-011-0657-y CrossRefGoogle Scholar
  11. 11.
    Murata S, Udono H, Tanahashi N, Hamada N, Watanabe K, Adachi K, Yamano T, Yui K, Kobayashi N, Kasahara M, Tanaka K, Chiba T (2001) Immunoproteasome assembly and antigen presentation in mice lacking both PA28alpha and PA28beta. EMBO J 20(21):5898–5907. doi:10.1093/emboj/20.21.5898 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Kisselev AF, Garcia-Calvo M, Overkleeft HS, Peterson E, Pennington MW, Ploegh HL, Thornberry NA, Goldberg AL (2003) The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites. J Biol Chem 278(38):35869–35877. doi:10.1074/jbc.M303725200 CrossRefPubMedGoogle Scholar
  13. 13.
    Umasuthan N, Whang I, Lee Y, Lee S, Kim Y, Kim H, Jung SJ, Oh MJ, Choi CY, Yeo SY, Lee SJ, Lee J (2011) Heparin cofactor II (RbHCII) from rock bream (Oplegnathus fasciatus): molecular characterization, cloning and expression analysis. Fish Shellfish Immunol 30(1):194–208. doi:10.1016/j.fsi.2010.10.004 CrossRefPubMedGoogle Scholar
  14. 14.
    Revathy KS, Umasuthan N, Whang I, Lee Y, Lee S, Oh MJ, Jung SJ, Choi CY, Park CJ, Park HC, Lee J (2012) A novel acute phase reactant, serum amyloid A-like 1, from Oplegnathus fasciatus: genomic and molecular characterization and transcriptional expression analysis. Dev Comp Immunol. doi:10.1016/j.dci.2012.03.014 PubMedGoogle Scholar
  15. 15.
    Umasuthan N, Bathige S, Revathy KS, Wickramaarachchi WD, Wan Q, Whang I, Kim E, Park M, Park H-C, Lee J (2013) A C1 inhibitor ortholog from rock bream (Oplegnathus fasciatus): Molecular perspectives of a central regulator in terms of its genomic arrangement, transcriptional profiles and anti-protease activities of recombinant peptide. Dev Comp Immunol 42(2):197–210CrossRefPubMedGoogle Scholar
  16. 16.
    Patterton H-G, Graves S (2000) DNAssist: the integrated editing and analysis of molecular biology sequences in Windows. Bioinformatics 16(7):652–653. doi:10.1093/bioinformatics/16.7.652 CrossRefPubMedGoogle Scholar
  17. 17.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi:10.1093/molbev/msr121 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Campanella JJ, Bitincka L, Smalley J (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinform 4:29. doi:10.1186/1471-2105-4-29 CrossRefGoogle Scholar
  20. 20.
    Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV, Ignatieva EV, Ananko EA, Podkolodnaya OA, Kolpakov FA, Podkolodny NL, Kolchanov NA (1998) Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic acids research 26(1):362–367PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Kloetzel PM (2001) Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2(3):179–187. doi:10.1038/35056572 CrossRefPubMedGoogle Scholar
  22. 22.
    Eggers M, Boes-Fabian B, Ruppert T, Kloetzel PM, Koszinowski UH (1995) The cleavage preference of the proteasome governs the yield of antigenic peptides. J Exp Med 182(6):1865–1870CrossRefPubMedGoogle Scholar
  23. 23.
    Kloetzel PM, Ossendorp F (2004) Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 16(1):76–81CrossRefPubMedGoogle Scholar
  24. 24.
    Hensley SE, Zanker D, Dolan BP, David A, Hickman HD, Embry AC, Skon CN, Grebe KM, Griffin TA, Chen W, Bennink JR, Yewdell JW (2010) Unexpected role for the immunoproteasome subunit LMP2 in antiviral humoral and innate immune responses. J Immunol 184(8):4115–4122. doi:10.4049/jimmunol.0903003 PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Muchamuel T, Basler M, Aujay MA, Suzuki E, Kalim KW, Lauer C, Sylvain C, Ring ER, Shields J, Jiang J, Shwonek P, Parlati F, Demo SD, Bennett MK, Kirk CJ, Groettrup M (2009) A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat Med 15(7):781–787. doi:10.1038/nm.1978 CrossRefPubMedGoogle Scholar
  26. 26.
    Caudill CM, Jayarapu K, Elenich L, Monaco JJ, Colbert RA, Griffin TA (2006) T cells lacking immunoproteasome subunits MECL-1 and LMP7 hyperproliferate in response to polyclonal mitogens. Journal of immunology 176(7):4075–4082CrossRefGoogle Scholar
  27. 27.
    Zaiss DMW, de Graaf N, Sijts AJAM (2008) The proteasome immunosubunit multicatalytic endopeptidase complex-like 1 Is a T-Cell-intrinsic factor influencing homeostatic expansion. Infect Immun 76(3):1207–1213. doi:10.1128/iai.01134-07 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    S-i Yamada, J-i Niwa, Ishigaki S, Takahashi M, Ito T, Sone J, Doyu M, Sobue G (2006) Archaeal proteasomes effectively degrade aggregation-prone proteins and reduce cellular toxicities in mammalian cells. J Biol Chem 281(33):23842–23851. doi:10.1074/jbc.M601274200 CrossRefGoogle Scholar
  29. 29.
    Kasahara M (1999) The chromosomal duplication model of the major histocompatibility complex. Immunol Rev 167:17–32CrossRefPubMedGoogle Scholar
  30. 30.
    Kasahara M, Hayashi M, Tanaka K, Inoko H, Sugaya K, Ikemura T, Ishibashi T (1996) Chromosomal localization of the proteasome Z subunit gene reveals an ancient chromosomal duplication involving the major histocompatibility complex. Proc Natl Acad Sci USA 93(17):9096–9101PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Clark MS, Pontarotti P, Gilles A, Kelly A, Elgar G (2000) Identification and characterization of a beta proteasome subunit cluster in the Japanese pufferfish (Fugu rubripes). J Immunol 165(8):4446–4452CrossRefPubMedGoogle Scholar
  32. 32.
    Murray BW, Sultmann H, Klein J (2000) Identification and linkage of the proteasome activator complex PA28 subunit genes in zebrafish. Scand J Immunol 51(6):571–576CrossRefPubMedGoogle Scholar
  33. 33.
    Matsuo M, Asakawa S, Shimizu N, Kimura H, Nonaka M (2002) Nucleotide sequence of the MHC class I genomic region of a teleost, the medaka (Oryzias latipes). Immunogenetics 53(10–11):930–940. doi:10.1007/s00251-001-0427-3 PubMedGoogle Scholar
  34. 34.
    Hansen JD, Strassburger P, Thorgaard GH, Young WP, Du Pasquier L (1999) Expression, linkage, and polymorphism of MHC-related genes in rainbow trout, oncorhynchus mykiss. J Immunol 163(2):774–786PubMedGoogle Scholar
  35. 35.
    Sytina EV, Pankratova EV (2003) Oct-1 transcription factor–plasticity and polyfunctionality. Mol Biol 37(5):755–767CrossRefGoogle Scholar
  36. 36.
    Natsuka S, Akira S, Nishio Y, Hashimoto S, Sugita T, Isshiki H, Kishimoto T (1992) Macrophage differentiation-specific expression of NF-IL6, a transcription factor for interleukin-6. Blood 79(2):460–466PubMedGoogle Scholar
  37. 37.
    Greenwel P, Tanaka S, Penkov D, Zhang W, Olive M, Moll J, Vinson C, Di Liberto M, Ramirez F (2000) Tumor necrosis factor alpha inhibits type I collagen synthesis through repressive CCAAT/enhancer-binding proteins. Mol Cell Biol 20(3):912–918PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Akagi T, Thoennissen NH, George A, Crooks G, Song JH, Okamoto R, Nowak D, Gombart AF, Koeffler HP (2010) In vivo deficiency of both C/EBPβ and C/EBPε results in highly defective myeloid differentiation and lack of cytokine response. PLoS One 5(11):e15419. doi:10.1371/journal.pone.0015419 PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117(Pt 25):5965–5973. doi:10.1242/jcs.01589 CrossRefPubMedGoogle Scholar
  40. 40.
    Ferrington DA, Hussong SA, Roehrich H, Kapphahn RJ, Kavanaugh SM, Heuss ND, Gregerson DS (2008) Immunoproteasome responds to injury in the retina and brain. J Neurochem 106(1):158–169. doi:10.1111/j.1471-4159.2008.05345.x PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Singh S, Awasthi N, Egwuagu CE, Wagner BJ (2002) Immunoproteasome expression in a nonimmune tissue, the ocular lens. Arch Biochem Biophys 405(2):147–153. doi:10.1016/s0003-9861(02)00341-7 CrossRefPubMedGoogle Scholar
  42. 42.
    Seifert U, Bialy LP, Ebstein F, Bech-Otschir D, Voigt A, Schroter F, Prozorovski T, Lange N, Steffen J, Rieger M, Kuckelkorn U, Aktas O, Kloetzel PM, Kruger E (2010) Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 142(4):613–624. doi:10.1016/j.cell.2010.07.036 CrossRefPubMedGoogle Scholar
  43. 43.
    Ho YK, Bargagna-Mohan P, Wehenkel M, Mohan R, Kim KB (2007) LMP2-specific inhibitors: chemical genetic tools for proteasome biology. Chem Biol 14(4):419–430. doi:10.1016/j.chembiol.2007.03.008 CrossRefPubMedGoogle Scholar
  44. 44.
    Kuhn DJ, Hunsucker SA, Chen Q, Voorhees PM, Orlowski M, Orlowski RZ (2009) Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood 113(19):4667–4676. doi:10.1182/blood-2008-07-171637 PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Barton LF, Cruz M, Rangwala R, Deepe GS Jr, Monaco JJ (2002) Regulation of immunoproteasome subunit expression in vivo following pathogenic fungal infection. J Immunol 169(6):3046–3052CrossRefPubMedGoogle Scholar
  46. 46.
    Deivasigamani B (2007) Structure of immune organ in edible catfish, Mystus gulio. J Environ Biol/Acad Environ Biol 28(4):757–764Google Scholar
  47. 47.
    Reimer T, Brcic M, Schweizer M, Jungi TW (2008) poly(I:C) and LPS induce distinct IRF3 and NF-κB signaling during type-I IFN and TNF responses in human macrophages. J Leukoc Biol 83(5):1249–1257. doi:10.1189/jlb.0607412 CrossRefPubMedGoogle Scholar
  48. 48.
    Shin EC, Seifert U, Kato T, Rice CM, Feinstone SM, Kloetzel PM, Rehermann B (2006) Virus-induced type I IFN stimulates generation of immunoproteasomes at the site of infection. J Clin Invest 116(11):3006–3014. doi:10.1172/JCI29832 PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Li Z, Diehl AM (2003) Innate immunity in the liver. Curr Opin Gastroenterol 19(6):565–571CrossRefPubMedGoogle Scholar
  50. 50.
    Gao B, Jeong WI, Tian Z (2008) Liver: an organ with predominant innate immunity. Hepatology 47(2):729–736. doi:10.1002/hep.22034 CrossRefPubMedGoogle Scholar
  51. 51.
    Parker GA, Picut CA (2005) Liver immunobiology. Toxicol Pathol 33(1):52–62. doi:10.1080/01926230590522365 CrossRefPubMedGoogle Scholar
  52. 52.
    Khan S, van den Broek M, Schwarz K, de Giuli R, Diener PA, Groettrup M (2001) Immunoproteasomes largely replace constitutive proteasomes during an antiviral and antibacterial immune response in the liver. J Immunol 167(12):6859–6868CrossRefPubMedGoogle Scholar
  53. 53.
    Akiyama K, Yokota K, Kagawa S, Shimbara N, Tamura T, Akioka H, Nothwang H, Noda C, Tanaka K, Ichihara A (1994) cDNA cloning and interferon gamma down-regulation of proteasomal subunits X and Y. Science 265(5176):1231–1234. doi:10.1126/science.8066462 CrossRefPubMedGoogle Scholar
  54. 54.
    Driscoll J, Brown MG, Finley D, Monaco JJ (1993) MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature 365(6443):262–264. doi:10.1038/365262a0 CrossRefPubMedGoogle Scholar
  55. 55.
    Gaczynska M, Rock KL, Goldberg AL (1993) Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365(6443):264–267. doi:10.1038/365264a0 CrossRefPubMedGoogle Scholar
  56. 56.
    Zhang YB, Wang YL, Gui JF (2007) Identification and characterization of two homologues of interferon-stimulated gene ISG15 in crucian carp. Fish Shellfish Immunol 23(1):52–61. doi:10.1016/j.fsi.2006.09.004 CrossRefPubMedGoogle Scholar
  57. 57.
    Chen WQ, Xu QQ, Chang MX, Zou J, Secombes CJ, Peng KM, Nie P (2010) Molecular characterization and expression analysis of the IFN-gamma related gene (IFN-gammarel) in grass carp Ctenopharyngodon idella. Vet Immunol Immunopathol 134(3–4):199–207. doi:10.1016/j.vetimm.2009.09.007 CrossRefPubMedGoogle Scholar
  58. 58.
    Sieger D, Stein C, Neifer D, van der Sar AM, Leptin M (2009) The role of gamma interferon in innate immunity in the zebrafish embryo. Dis Models Mech 2(11–12):571–581. doi:10.1242/dmm.003509 CrossRefGoogle Scholar
  59. 59.
    Wan Q, Wicramaarachchi WD, Whang I, Lim BS, Oh MJ, Jung SJ, Kim HC, Yeo SY, Lee J (2012) Molecular cloning and functional characterization of two duplicated two-cysteine containing type I interferon genes in rock bream Oplegnathus fasciatus. Fish Shellfish Immunol 33(4):886–898. doi:10.1016/j.fsi.2012.07.018 CrossRefPubMedGoogle Scholar
  60. 60.
    Soloski MJ, Szperka ME, Davies A, Wooden SL (2000) Host immune response to intracellular bacteria: a role for MHC-linked class-Ib antigen-presenting molecules. Proc Soc Exp Biol Med Soc Exp Biol Med 224(4):231–239CrossRefGoogle Scholar
  61. 61.
    Matsumoto M, Seya T (2008) TLR3: interferon induction by double-stranded RNA including poly(I:C). Adv Drug Deliv Rev 60(7):805–812. doi:10.1016/j.addr.2007.11.005 CrossRefPubMedGoogle Scholar
  62. 62.
    Opitz E, Koch A, Klingel K, Schmidt F, Prokop S, Rahnefeld A, Sauter M, Heppner FL, Volker U, Kandolf R, Kuckelkorn U, Stangl K, Kruger E, Kloetzel PM, Voigt A (2011) Impairment of immunoproteasome function by beta5i/LMP7 subunit deficiency results in severe enterovirus myocarditis. PLoS Pathog 7(9):e1002233. doi:10.1371/journal.ppat.1002233 PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Kim DH, Lee SM, Hong BY, Kim YT, Choi TJ (2003) Cloning and sequence analysis of cDNA for the proteasome activator PA28-beta subunit of flounder (Paralichthys olivaceus). Mol Immunol 40(9):611–616CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Saranya Revathy Kasthuri
    • 1
  • Navaneethaiyer Umasuthan
    • 1
    • 2
  • Ilson Whang
    • 1
    • 2
  • Bong-Soo Lim
    • 2
  • Hyung-Bok Jung
    • 2
  • Myung-Joo Oh
    • 3
  • Sung-Ju Jung
    • 3
  • Sang-Yeob Yeo
    • 4
  • Sung Yeon Kim
    • 5
  • Jehee Lee
    • 1
    • 2
  1. 1.Department of Marine Life Sciences, School of Marine Biomedical SciencesJeju National UniversityJejuRepublic of Korea
  2. 2.Fish Vaccine Development CenterJeju National UniversityJejuRepublic of Korea
  3. 3.Department of Aqualife MedicineChonnam National UniversityChonnamRepublic of Korea
  4. 4.Division of Applied Chemistry & Biotechnology, Department of BiotechnologyHanbat National UniversityDaejeonRepublic of Korea
  5. 5.Genetics & Breeding Research CenterNational Fisheries Research & Development InstituteGeojeRepublic of Korea

Personalised recommendations