Molecular Biology Reports

, Volume 41, Issue 8, pp 5321–5327 | Cite as

The role of bronchial epithelial cell apoptosis in the pathogenesis of COPD

  • B. GogebakanEmail author
  • R. Bayraktar
  • M. Ulaslı
  • S. Oztuzcu
  • D. Tasdemir
  • H. Bayram


There is an increased airway inflammation in the pathogenesis of chronic obstructive pulmonary disease (COPD), and it has been suggested that there may also be problem in the apoptosis and renewal of cells. However, there are limited human airway cell studies, in particular those from larger airways such as bronchi. We cultured primary human bronchial epithelial cells (HBECs) from bronchial explants of smokers (n = 6) without COPD and smokers with COPD (n = 8). Apoptosis was studied by fluorescence activated cell sorting. qRT-PCR was used to assess mRNA expression for proteins involving apoptosis including p21CIP1/WAF1, p53, caspase-8 and caspase-9. Although there was no difference in the rate of viable cells between cells from smokers and COPDs, the level of early apoptotic cells was significantly increased in COPD cells [mean ± standard error of mean (SEM) = 4.86 ± 3.2 %, p = 0.015] as compared to smokers (mean ± SEM = 2.71 ± 1.62 %). In contrast, the rate of late apoptotic cells was significantly decreased in COPD cells (mean ± SEM = 9.82 ± 5.71 %) comparing to smokers (mean ± SEM = 15.21 ± 5.08 %, p = 0.003). Although expression of mRNA for p21CIP1/WAF1 and caspase-9 was similar in both groups, p53 and caspase-8 mRNA expression was significantly greater in COPD cells. These findings suggest that HBEC apoptosis is increased in COPD, and that this involves p53 and caspase-8 pathways.


Apoptosis Caspases COPD Primary bronchial epithelial cells p21 p53 



This study is funded by The Research Fund of Gaziantep University with the Grant No.: TF.11.32.


  1. 1. Global strategy for the diagnosis, management, and prevention of COPD [updated 2013]
  2. 2.
    Barnes PJ, Shapiro SD, Pauwels RA (2003) Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J 22(4):672–688CrossRefPubMedGoogle Scholar
  3. 3.
    Demedts IK, Demoor T, Bracke KR, Joos GF, Brusselle GG (2006) Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res 7:53. doi: 10.1186/1465-9921-7-53 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Schrader K, Huai J, Jockel L, Oberle C, Borner C (2010) Non-caspase proteases: triggers or amplifiers of apoptosis? Cell Mol Life Sci 67(10):1607–1618. doi: 10.1007/s00018-010-0287-9 CrossRefPubMedGoogle Scholar
  5. 5.
    Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM (1998) An induced proximity model for caspase-8 activation. J Biol Chem 273(5):2926–2930CrossRefPubMedGoogle Scholar
  6. 6.
    Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489CrossRefPubMedGoogle Scholar
  7. 7.
    Rao RV, Hermel E, Castro-Obregon S, del Rio G, Ellerby LM, Ellerby HM, Bredesen DE (2001) Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 276(36):33869–33874. doi: 10.1074/jbc.M102225200 CrossRefPubMedGoogle Scholar
  8. 8.
    Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90(3):405–413CrossRefPubMedGoogle Scholar
  9. 9.
    Szegezdi E, Fitzgerald U, Samali A (2003) Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann N Y Acad Sci 1010:186–194CrossRefPubMedGoogle Scholar
  10. 10.
    Schuler M, Green DR (2001) Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 29(Pt 6):684–688CrossRefPubMedGoogle Scholar
  11. 11.
    Cmielova J, Rezacova M (2011) p21Cip1/Waf1 protein and its function based on a subcellular localization [corrected]. J Cell Biochem 112(12):3502–3506. doi: 10.1002/jcb.23296 CrossRefPubMedGoogle Scholar
  12. 12.
    Huo JX, Metz SA, Li GD (2004) p53-independent induction of p21(waf1/cip1) contributes to the activation of caspases in GTP-depletion-induced apoptosis of insulin-secreting cells. Cell Death Differ 11(1):99–109. doi: 10.1038/sj.cdd.4401322 CrossRefPubMedGoogle Scholar
  13. 13.
    Bayram H, Ito K, Issa R, Ito M, Sukkar M, Chung KF (2006) Regulation of human lung epithelial cell numbers by diesel exhaust particles. Eur Respir J 27(4):705–713. doi: 10.1183/09031936.06.00012805 CrossRefPubMedGoogle Scholar
  14. 14.
    Puchelle E, Zahm JM, Tournier JM, Coraux C (2006) Airway epithelial repair, regeneration, and remodeling after injury in chronic obstructive pulmonary disease. Proc Am Thorac Soc 3(8):726–733. doi: 10.1513/pats.200605-126SF CrossRefPubMedGoogle Scholar
  15. 15.
    Imai K, Mercer BA, Schulman LL, Sonett JR, D’Armiento JM (2005) Correlation of lung surface area to apoptosis and proliferation in human emphysema. Eur Respir J 25(2):250–258. doi: 10.1183/09031936.05.00023704 CrossRefPubMedGoogle Scholar
  16. 16.
    Bayram H, Devalia JL, Khair OA, Abdelaziz MM, Sapsford RJ, Sagai M, Davies RJ (1998) Comparison of ciliary activity and inflammatory mediator release from bronchial epithelial cells of nonatopic nonasthmatic subjects and atopic asthmatic patients and the effect of diesel exhaust particles in vitro. J Allergy Clin Immunol 102(5):771–782CrossRefPubMedGoogle Scholar
  17. 17.
    Devalia JL, Sapsford RJ, Wells CW, Richman P, Davies RJ (1990) Culture and comparison of human bronchial and nasal epithelial cells in vitro. Respir Med 84(4):303–312CrossRefPubMedGoogle Scholar
  18. 18.
    Bayram H, Fakili F, Gogebakan B, Bayraktar R, Oztuzcu S, Dikensoy O, Chung KF (2013) Effect of serum on diesel exhaust particles (DEP)-induced apoptosis of airway epithelial cells in vitro. Toxicol Lett 218(3):215–223. doi: 10.1016/j.toxlet.2013.02.006 CrossRefPubMedGoogle Scholar
  19. 19.
    Kuwano K, Araya J, Nakayama K (2008) Epithelial cell fate following lung injury. Expert Rev Respir Med 2(5):573–582. doi: 10.1586/17476348.2.5.573 CrossRefPubMedGoogle Scholar
  20. 20.
    Kasahara Y, Tuder RM, Taraseviciene-Stewart L, Le Cras TD, Abman S, Hirth PK, Waltenberger J, Voelkel NF (2000) Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Investig 106(11):1311–1319. doi: 10.1172/JCI10259 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Kasahara Y, Tuder RM, Cool CD, Voelkel NF (2000) Expression of 15-lipoxygenase and evidence for apoptosis in the lungs from patients with COPD. Chest 117(5 Suppl 1):260SPubMedGoogle Scholar
  22. 22.
    Uhal BD, Joshi I, Hughes WF, Ramos C, Pardo A, Selman M (1998) Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung. Am J Physiol 275(6 Pt 1):1192–1199Google Scholar
  23. 23.
    Calabrese F, Giacometti C, Beghe B, Rea F, Loy M, Zuin R, Marulli G, Baraldo S, Saetta M, Valente M (2005) Marked alveolar apoptosis/proliferation imbalance in end-stage emphysema. Respir Res 6:14. doi: 10.1186/1465-9921-6-14 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Yokohori N, Aoshiba K, Nagai A (2004) Increased levels of cell death and proliferation in alveolar wall cells in patients with pulmonary emphysema. Chest 125(2):626–632CrossRefPubMedGoogle Scholar
  25. 25.
    Hodge S, Hodge G, Holmes M, Reynolds PN (2005) Increased airway epithelial and T-cell apoptosis in COPD remains despite smoking cessation. Eur Respir J 25(3):447–454. doi: 10.1183/09031936.05.00077604 CrossRefPubMedGoogle Scholar
  26. 26.
    Comer DM, Kidney JC, Ennis M, Elborn JS (2013) Airway epithelial cell apoptosis and inflammation in COPD, smokers and nonsmokers. Eur Respir J 41(5):1058–1067. doi: 10.1183/09031936.00063112 CrossRefPubMedGoogle Scholar
  27. 27.
    Majo J, Ghezzo H, Cosio MG (2001) Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J 17(5):946–953CrossRefPubMedGoogle Scholar
  28. 28.
    Slebos DJ, Ryter SW, van der Toorn M, Liu F, Guo F, Baty CJ, Karlsson JM, Watkins SC, Kim HP, Wang X, Lee JS, Postma DS, Kauffman HF, Choi AM (2007) Mitochondrial localization and function of heme oxygenase-1 in cigarette smoke-induced cell death. Am J Respir Cell Mol Biol 36(4):409–417. doi: 10.1165/rcmb.2006-0214OC PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Siganaki M, Koutsopoulos AV, Neofytou E, Vlachaki E, Psarrou M, Soulitzis N, Pentilas N, Schiza S, Siafakas NM, Tzortzaki EG (2010) Deregulation of apoptosis mediators’ p53 and bcl2 in lung tissue of COPD patients. Respir Res 11:46. doi: 10.1186/1465-9921-11-46 PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Chiappara G, Gjomarkaj M, Virzi A, Sciarrino S, Ferraro M, Bruno A, Montalbano AM, Vitulo P, Minervini MI, Pipitone L, Pace E (2013) The role of p21 Waf1/Cip1 in large airway epithelium in smokers with and without COPD. Biochim Biophys Acta 1832(10):1473–1481. doi: 10.1016/j.bbadis.2013.04.022 CrossRefPubMedGoogle Scholar
  31. 31.
    Liedtke C, Groger N, Manns MP, Trautwein C (2003) The human caspase-8 promoter sustains basal activity through SP1 and ETS-like transcription factors and can be up-regulated by a p53-dependent mechanism. J Biol Chem 278(30):27593–27604. doi: 10.1074/jbc.M304077200 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • B. Gogebakan
    • 1
    • 3
    Email author
  • R. Bayraktar
    • 2
  • M. Ulaslı
    • 2
  • S. Oztuzcu
    • 2
  • D. Tasdemir
    • 3
  • H. Bayram
    • 3
  1. 1.Department of Medical Biology, Faculty of Medicine, School of MedicineMustafa Kemal UniversityHatayTurkey
  2. 2.Department of Medical Biology, School of MedicineUniversity of GaziantepGaziantepTurkey
  3. 3.Respiratory Research Laboratory, Department of Respiratory Medicine, School of MedicineUniversity of GaziantepGaziantepTurkey

Personalised recommendations