Molecular Biology Reports

, Volume 41, Issue 7, pp 4803–4816 | Cite as

Mir-218 contributes to the transformation of 5-Aza/GF induced umbilical cord mesenchymal stem cells into hematopoietic cells through the MITF pathway

  • Kaimeng Hu
  • Chen Xu
  • Haitao Ni
  • Zhenyu Xu
  • Yue Wang
  • Sha Xu
  • Kaihong Ji
  • Jun Xiong
  • Houqi Liu


Experiments with 5′-azacytidine and hematopoietic growth factor approved for the transformation of human mesenchymal cells into hematopoietic cells have demonstrated that cell fate can be dramatically altered by changing the epigenetic state of cells. Here, we demonstrate that umbilical cord-derived human mesenchymal stem cells (uMSC) are easily accessible and could be induced into cells with hematopoietic function. Furthermore, we focused on the crucial miRNAs and relative transcription factors (TFs) in our study. We show that combined Aza/GF incubation can increase expression of miR-218, miR-150, and miR-451. Accordingly, miR-218 overexpression achieved an increase in expression of CD34 (3–13 %), CD45 (50–65 %), CD133 and c-Kit in uMSCs that cultured with Aza/GF. The expression of the relevant transcriptional factors, such as HoxB4 and NF-Ya, was higher than in the negative control group or miR-218 inhibitor transfected group, and microphthalmia-associated transcription factor (MITF) is regarded to be a direct target of miR-218, as demonstrated by luciferase assays. Overexpression of miR-218 might, in conjunction with the MITF, upregulate the expression of NF-Ya and HoxB4, which induce a hematopoietic state. We concluded that miR-218 might have a role in the transformation of hematopoietic cells through the MITF pathway.


Human umbilical cord-derived mesenchymal stem cells MiR-218 MITF Hematopoietic cells 



We acknowledge Pengfei Luo, from Changhai Hospital, give us a kind aid of data analysis and interpretation. This study was supported by the National Key Basic Research and Development Project (Beijing, China) (No. 2011CB965101).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Jendiroba DB, Freireich EJ (2000) Granulocyte transfusions: from neutrophil replacement to immunereconstitution. Blood Rev 14:219–227CrossRefPubMedGoogle Scholar
  2. 2.
    Rebulla P (2005) A mini-review on platelet refractoriness. Haematologica 90:247–253PubMedGoogle Scholar
  3. 3.
    Petvises S, O’Neill HC (2012) Hematopoiesis leading to a diversity of dendritic antigen-presenting cell types. Immunol Cell Biol 90(4):372–378CrossRefPubMedGoogle Scholar
  4. 4.
    Moncharmont P, Rigal D (2012) Prevalence of platelet-specific antibodies in the recipients of platelet units with transfusion adverse event. Transfus Clin Biol 19(6):333–337CrossRefPubMedGoogle Scholar
  5. 5.
    Sachs UJ (2007) The pathogenesis of transfusion-related acute lung injury and how to avoid this serious adverse reaction of transfusion. Transfus Apher Sci 37:273–282CrossRefPubMedGoogle Scholar
  6. 6.
    Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:631–644PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Sandler VM, Lailler N, Bouhassira EE (2011) Reprogramming of embryonic human fibroblasts into fetal hematopoietic progenitors by fusion with human fetal liver CD34+ cells. PLoS One 6(4):e18265PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Ramos-Mejía V, Montes R, Bueno C, Ayllón V, Real PJ, Rodríguez R, Menendez P (2012) Residual expression of the reprogramming factors prevents differentiation of iPSC generated from human fibroblasts and cord blood CD34+ progenitors. PLoS One 7(4):e35824PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Szabo E, Rampalli S, Risueño RM, Schnerch A, Mitchell R, Fiebig-Comyn A, Levadoux-Martin M, Bhatia M (2010) Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468(7323):521–526CrossRefPubMedGoogle Scholar
  10. 10.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676CrossRefPubMedGoogle Scholar
  11. 11.
    Weissman IL, Shizuru JA (2008) The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 112(9):3543–3553PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Harris DM, Hazan-Haley I, Coombes K, Bueso-Ramos C, Singh S, Sun M, Kundra V, Kurzrock R, Estrov Z (2011) Transformation of human mesenchymal cells and skin fibroblasts into hematopoietic cells. PLoS One 6(6):e21250PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Vanhees K, Coort S, Ruijters EJ, Godschalk RW, van Schooten FJ, Barjesteh van Waalwijk van Doorn-Khosrovani S (2011) Epigenetics: prenatal exposure to genistein leaves a permanent signature on the hematopoietic lineage. FASEB J 25(2):797–807CrossRefPubMedGoogle Scholar
  14. 14.
    Jackson M, Axton RA, Taylor AH, Wilson JA, Gordon-Keylock SA, Kokkaliaris KD, Brickman JM, Schulz H, Hummel O, Hubner N, Forrester LM (2012) HOXB4 can enhance the differentiation of embryonic stem cells by modulating the hematopoietic niche. Stem Cells 30(2):150–160CrossRefPubMedGoogle Scholar
  15. 15.
    Bissels U, Bosio A, Wagner W (2012) MicroRNAs are shaping the hematopoietic landscape. Haematologica 97(2):160–167PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Kluiver J, Kroesen B-J, Poppema S, van den Berg A (2006) The role of microRNAs in normal hematopoiesis and hematopoietic malignancies. Leukemia 20:1931–1936CrossRefPubMedGoogle Scholar
  17. 17.
    Ooi AG, Sahoo D, Adorno M, Wang Y, Weissman IL, Park CY (2010) MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets. Proc Natl Acad Sci USA 107(50):21505–21510PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C et al (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123(5):819–831CrossRefPubMedGoogle Scholar
  19. 19.
    Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, Liuzzi F, Peschle C (2005) MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 102(50):18081–18086PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    O’Connell RM, Baltimore D (2012) MicroRNAs and hematopoietic cell development. Curr Top Dev Biol 99:145–174CrossRefPubMedGoogle Scholar
  21. 21.
    Forrester LM, Jackson M (2012) Mechanism of action of HOXB4 on the hematopoietic differentiation of embryonic stem cells. Stem Cells 30(3):379–385CrossRefPubMedGoogle Scholar
  22. 22.
    Bungartz G, Land H, Scadden DT, Emerson SG (2012) NF-Y is necessary for hematopoietic stem cell proliferation and survival. Blood 119(6):1380–1389PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Giannola DM, Shlomchik WD, Jegathesan M, Liebowitz D, Emerson SG (2000) Hematopoietic expression of HOXB4 is regulated in normal and leukemic stem cells through transcriptional activation of the HOXB4 promoter by upstream stimulating factor (USF)-1 and USF-2. J Exp Med 192(10):1479–1490PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Domashenko AD, Danet-Desnoyers G, Aron A, Carroll MP, Emerson SG (2010) TAT-mediated transduction of NF-Ya peptide induces the ex vivo proliferation and engraftment potential of human hematopoietic progenitor cells. Blood 116(15):2676–2683PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Gu J, Qian H, Shen L, Zhang X, Zhu W, Huang L, Yan Y, Mao F, Zhao C, Shi Y, Xu W (2012) Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through TGF-β/Smad pathway. PLoS One 7(12):e52465PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Chao YH, Wu HP, Chan CK, Tsai C, Peng CT, Wu KH (2012) Umbilical cord-derived mesenchymal stem cells for hematopoietic stem cell transplantation. J Biomed Biotechnol 2012:759503PubMedCentralPubMedGoogle Scholar
  27. 27.
    Arufe MC, De la Fuente A, Fuentes I, Toro FJ, Blanco FJ (2011) Umbilical cord as a mesenchymal stem cell source for treating joint pathologies. World J Orthop 2(6):43–50PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Jones PA (1985) Altering gene expression with 5-azacytidine. Cell 40:485–486CrossRefPubMedGoogle Scholar
  29. 29.
    Solary E, Fontenay M (2010) Myeloproliferative/myelodysplastic syndromes. Rev Prat 60(10):1413–1415PubMedGoogle Scholar
  30. 30.
    Issa JP (2007) DNA methylation as a therapeutic target in cancer. Clin Cancer Res 13:1634–1637CrossRefPubMedGoogle Scholar
  31. 31.
    Alcazar O, Achberger S, Aldrich W, Hu Z, Negrotto S, Saunthararajah Y, Triozzi P (2012) Epigenetic regulation by decitabine of melanoma differentiation in vitro and in vivo. Int J Cancer 131(1):18–29PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Baumert B, Kawa MP, Kotowski M, Grymuła K, Safranow K, Pabisiak K, Pius E, Peregud-Pogorzelski J, Walczak M, Ostrowski M, Machaliński B (2012) Bone marrow of multiorgan donors underutilized: implications for improvement of accessibility of hematopoietic cells for transplantations. Transplantation 93(2):165–171CrossRefPubMedGoogle Scholar
  33. 33.
    Liu Y-P, Hemattia P (2009) Generation of mesenchymal stromal cells from a HOXB4-expressing human embryonic stem cells colony. Cytotherapy 11(6):716–725PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Navarro F, Lieberman J (2010) Differentiation and function small RNAs guide hematopoietic cell. J Immunol 184:5939–5947CrossRefPubMedGoogle Scholar
  35. 35.
    Edelstein LC, Bray PF (2012) Small RNAs as potential platelet therapeutics. Handb Exp Pharmacol 210:435–445CrossRefPubMedGoogle Scholar
  36. 36.
    Alemdehy MF, Erkeland SJ (2012) MicroRNAs: key players of normal and malignant myelopoiesis. Curr Opin Hematol 19(4):261–267CrossRefPubMedGoogle Scholar
  37. 37.
    Heuston EF, Lemon KT, Arceci RJ (2011) The beginning of the road for non-coding RNAs in normal hematopoiesis and hematologic malignancies. Front Genet 2:94PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Huang X, Gschweng E, Van Handel B, Cheng D, Mikkola HK, Witte ON (2011) Regulated expression of microRNAs-126/126* inhibits erythropoiesis from human embryonic stem cells. Blood 117(7):2157–2165PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Pritchard CC, Kroh E, Wood B, Arroyo JD, Dougherty KJ, Miyaji MM, Tait JF, Tewari M (2012) Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila) 5(3):492–497CrossRefGoogle Scholar
  40. 40.
    Adams BD, Guo S, Bai H, Guo Y, Megyola CM, Cheng J, Heydari K, Xiao C, Reddy EP, Lu J (2012) An in vivo functional screen uncovers miR-150-mediated regulation of hematopoietic injury response. Cell Rep 2(4):1048–1060PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Zanette DL, Rivadavia F, Molfetta GA, Barbuzano FG, Proto-Siqueira R, Silva WA Jr, Falcão RP, Zago MA (2007) miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res 40(11):1435–1440CrossRefPubMedGoogle Scholar
  42. 42.
    He X, Dong Y, Wu CW, Zhao Z, Ng SS, Chan FK, Sung JJ, Yu J (2012) MicroRNA-218 inhibits cell cycle progression and promotes apoptosis in colon cancer by downregulating oncogene BMI-1. Mol Med. doi: 10.2119/molmed.2012.00304 PubMedGoogle Scholar
  43. 43.
    Alajez NM, Lenarduzzi M, Ito E, Hui AB, Shi W, Bruce J, Yue S, Huang SH, Xu W, Waldron J, O’Sullivan B, Liu FF (2011) MiR-218 suppresses nasopharyngeal cancer progression through downregulation of survivin and the SLIT2-ROBO1 pathway. Cancer Res 71(6):2381–2391CrossRefPubMedGoogle Scholar
  44. 44.
    Lee YN, Brandal S, Noel P, Wentzel E, Mendell JT, McDevitt MA, Kapur R, Carter M, Metcalfe DD, Takemoto CM (2011) KIT signaling regulates MITF expression through miRNAs in normal and malignant mast cell proliferation. Blood 117(13):3629–3640PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Shen J, Wang S, Zhang YJ, Kappil MA, Chen Wu H, Kibriya MG, Wang Q, Jasmine F, Ahsan H, Lee PH, Yu MW, Chen CJ, Santella RM (2012) Genome-wide aberrant DNA methylation of microRNA host genes in hepatocellular carcinoma. Epigenetics 7(11):1230–1237PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Wang P, Li Y, Hong W, Zhen J, Ren J, Li Z, Xu A (2012) The changes of microRNA expression profiles and tyrosinase related proteins in MITF knocked down melanocytes. Mol Biosyst 8(11):2924–2931CrossRefPubMedGoogle Scholar
  47. 47.
    Gao C, Zhang Z, Liu W, Xiao S, Gu W, Lu H (2010) Reduced microRNA-218 expression is associated with high nuclear factor kappa B activation in gastric cancer. Cancer 116:41–49CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Kaimeng Hu
    • 1
  • Chen Xu
    • 1
  • Haitao Ni
    • 1
  • Zhenyu Xu
    • 1
  • Yue Wang
    • 1
  • Sha Xu
    • 1
  • Kaihong Ji
    • 1
  • Jun Xiong
    • 1
  • Houqi Liu
    • 1
  1. 1.Research Center of Developmental BiologySecond Military Medical UniversityShanghaiChina

Personalised recommendations